
Serverless Computing: Design, 
Implementation, and Performance

Garrett McGrath and Paul R. Brenner



Introduction

Serverless Computing
•Explosion in popularity over the past 3 years

•Offerings from all leading cloud providers

•However, few performance comparisons of these platforms exist

This Presentation
•Explore serverless design through a new prototype platform

•Focused on performant execution of functions

•Serverless paradigms create long function chains, real-
time pipelines; latency matters

•Develop cross-platform performance tests

•Measure performance of existing commercial platforms and 
prototype



Prototype Overview

Serverless Prototype Platform
• Implemented in C#/.NET

•Utilizes Windows containers as function execution environments

•Docker provides container management functionality

•Deployed on a variety of services in Microsoft Azure

•Available: https://github.com/mgarrettm/serverless-prototype

Prototype Purpose
•Research prototype on which to explore serverless platform 

design

•Baseline to compare against existing platforms

Prototype Goals
•Efficient execution of functions

•Simplicity of implementation

https://github.com/mgarrettm/serverless-prototype


Prototype Design

f()Function

Functions!

•Functions are the unit of 
deployment and scaling

•Simple goals: support basic CRUD 
and synchronous execution of 
functions

•How to manage functions?

•Where to execute functions?

•How to discover those locations?



Prototype Design

f()Function

Container

Function Containers

•Function resides within container 
for security and resource isolation

•Containers are reused to offset 
unwieldy start-up times

•Windows Server Containers 
chosen as container technology

•Windows “Nano” Server image 
(801 MB) used

•Alpine Linux is 18 MB

•Node.js v6.9.5 runtime supported



Prototype Design

f()Function

Worker VM

Container

f()Function

Container

Worker VMs

•Handles container lifecycle and 
accepts function execution 
requests

•Containers expire after 15 
minutes without execution

•Many workers; many containers 
per worker

• Important choice between 
existing container management 
systems and custom solution



Prototype Design

f()Function

Worker VM

Container

f()Function

Container

Web API

Table
Storage

Blob
Storage

Web Service

•External-facing component of 
platform

•Web API provides function CRUD 
and execution

•Function metadata stored in 
Azure Table Storage

•Function code artifacts stored in 
Azure Blob Storage and linked in 
metadata



Prototype Design

f()Function

Worker VM

Container

f()Function

ContainerWarm Stacks

Cold Queue

Web API

Table
Storage

Blob
Storage

Container Discovery

•Workers reserve memory space as 
allocations and store their 
locations in messaging layer

•Unassigned container locations 
reside in cold queue

• LIFO warm stack for each function 
to store assigned containers

•Workers are source of truth for 
container state (expiration, 
inconsistent data)



Prototype Design

f()Function

Worker VM

Container

f()Function

Container

Redis

Warm Stacks

Cold Queue

Web API

Table
Storage

Blob
Storage

Redis

•Can afford to compromise 
consistency and durability!

•Availability and load balancing 
may be problematic

•Consistent hashing service is 
viable alternative

•Azure Storage Queues do not 
provide LIFO functionality



Performance Framework

Testing Framework
•Developed a basic cross-platform testing framework in Node.js using the Serverless Framework

• Available: https://github.com/mgarrettm/serverless-performance

•Created a Serverless Framework provider plugin to deploy functions to the prototype
• Available: https://github.com/mgarrettm/serverless-prototype-plugin

•Deploys a function that immediately returns with a unique id of its instance

Testing Methodology
•Tests conducted from virtual machines in same datacenter as functions

• Exception: IBM OpenWhisk tested from US-SouthCentral datacenter in Microsoft Azure (<10ms latency)

•Tests measure response time using test machine clock
• Network latency unaccounted for (test machines placed as close as possible to function)

•Tests run in March 2017
• Platforms change frequently

https://github.com/mgarrettm/serverless-performance
https://github.com/mgarrettm/serverless-prototype-plugin


Performance Results

Concurrency Test
•Designed to measure 

throughput of serverless 
platforms

•Reissues each request 
immediately after receiving the 
response from the previous call

• Increase concurrent requests 
from 1 to 15



Performance Results

Concurrency Test
•Designed to measure 

throughput of serverless 
platforms

•Reissues each request 
immediately after receiving the 
response from the previous call

• Increase concurrent requests 
from 1 to 15



Performance Results

Concurrency Test
•Designed to measure 

throughput of serverless 
platforms

•Reissues each request 
immediately after receiving the 
response from the previous call

• Increase concurrent requests 
from 1 to 15



Performance Results

Concurrency Test
•Designed to measure 

throughput of serverless 
platforms

•Reissues each request 
immediately after receiving the 
response from the previous call

• Increase concurrent requests 
from 1 to 15



Performance Results

Backoff Test
•Designed to measure latency 

of serverless platforms and 
show container expiration 
thresholds

• Increase time between 
consecutive requests from 1 
to 30 minutes



Future Work

Serverless Prototype
•Asynchronous executions

•More difficult because executions must be guaranteed once success is returned to client

•Durable tracking of active executions alongside existing execution pipeline

•More advanced container support

•Windows Server Containers are limited in their operations (pausing/resizing)

•Support for Linux Containers opens up opportunities to improve cold start performance

•Docker’s path towards modularization with Moby could be useful in tailoring Docker for FaaS

Performance Framework
•Asynchronous execution performance testing

•Accurate timing is more difficult

•Services like X-Ray in AWS help, but are not cross-platform



Questions?


