
Supercomputing as a Service:
Massively-Parallel Jobs on FaaS Platforms

Sadjad Fouladi
Stanford University

https://xkcd.com/303/

Compiling clang takes >2 hours.

https://xkcd.com/303/

EDITOR

"MY VIDEO'S ENCODING!"

ENCODING!

Compressing a 15-minute 4K video takes ~7.5 hours.

ANIMATOR

"MY ANIMATION'S RENDERING!"

RENDERING!

Rendering each frame of Monsters University took 29 hours.

Many of these pipelines take hours and hours to finish.
The Problem

Can we achieve interactive speeds in these applications?
The Question

Massive Parallelism*

The Answer

* well, probably.

How to get thousands of threads?

• The largest companies are able to operate massive datacenters that can
support such levels of parallelism.

• But, end users and developers are unable to scale their resource footprint to
thousands of parallel threads on demand in an efficient and scalable manner.

8

Classic Approach: VMs

• Infrastructure-as-a-Service
• Thousands of threads
• Arbitrary Linux executables
👎 Minute-scale startup time (OS has to boot up, ...)
👎 High minimum cost

9

Cloud function services have (as yet) unrealized power

• AWS Lambda, Google Cloud Functions, IBM Cloud Functions, Azure
Functions, etc.

• Intended for event handlers and Web microservices, but...

• Features:
✔ Thousands of threads
✔ Arbitrary Linux executables
✔ Sub-second startup
✔ Sub-second billing

10

3,600 threads for one second → 10¢

Supercomputing as a Service

11

Cancel

Remotely (~5 secs, 50¢)

Locally (~5 hours)

Compressing this video will take a long
time. How do you want to execute this

job?

Encoding

Two projects that we did based on this promise:

• ExCamera: Low-Latency Video Processing

• gg: make -j1000 (and other jobs) on FaaS infrastructure

12

ExCamera: Low-Latency Video Processing Using Thousands of
Tiny Threads

Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Balasubramaniam, William Zeng, Rahul
Bhalerao, Anirudh Sivaraman, George Porter, and Keith Winstein. "Encoding, Fast and Slow: Low-Latency Video
Processing Using Thousands of Tiny Threads." In 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDIʼ17).

What we currently have

• People can make changes to a word-processing document

• The changes are instantly visible for the others

14

What we would like to have

• People can interactively edit and transform a video

• The changes are instantly visible for the others

for Video?

"Apply this awesome filter to my video."

"Look everywhere for this face in this movie."

"Remake Star Wars Episode I without Jar Jar."

Challenges in low-latency video processing

• Low-latency video processing would need thousands of threads, running in
parallel, with instant startup.

• However, the finer-grained the parallelism, the worse the compression
efficiency.

19

First challenge: thousands of threads

• We built mu, a library for designing and deploying
general-purpose parallel computations on a
commercial “cloud function” service.

• The system starts up thousands of threads in
seconds and manages inter-thread communication.

• mu is open-source software: https://github.com/
excamera/mu

20

λ λ λ λ

rendezvous server

local machine

https://github.com/excamera/mu
https://github.com/excamera/mu

Second challenge: parallelism hurts compression efficiency

• Existing video codecs only expose a simple interface that's not suitable for
massive parallelism.

• We built a video codec in explicit state-passing style, intended for massive
fine-grained parallelism.

• Implemented in 11,500 lines of C++11 for Google's VP8 format.

21

decode(state, frame) → (state′, image) 
encode(state, image) → interframe 
rebase(state, image, interframe) → interframe′

ExCamera 2.6 mins

14.8-minute 4K Video @20dB

vpxenc Single-Threaded 453 mins

vpxenc Multi-Threaded 149 mins

YouTube (H.264) 37 mins

ExCamera

• Two major contributions:

• Framework to run 5,000-way parallel jobs with IPC on a commercial
“cloud function” service.

• Purely functional video codec for massive fine-grained parallelism.

• 56× faster than existing encoder, for <$6.

23

gg: make -j1000 (and other jobs) on function-as-a-service
infrastructure

Sadjad Fouladi, Dan Iter, Shuvo Chatterjee, Christos Kozyrakis, Matei Zaharia, Keith Winstein

What is gg?

• gg is a system for executing
interdependent software
workflows across thousands of
short-lived “lambdas”.

25

hello(stripped)

libc

hello

libhello.a

hello.c

hello.i

dirname.c

dirname.i

closeout.c

closeout.i

string.h stdio.h

hello.o

hello.s

closeout.o

closeout.s

dirname.o

dirname.s

"Thunk" abstraction

26

hello(stripped)

libc

hello

libhello.a

hello.c

hello.i

dirname.c

dirname.i

closeout.c

closeout.i

string.h stdio.h

hello.o

hello.s

closeout.o

closeout.s

dirname.o

dirname.s

{ "function": { "exe": "g++",
 "args": ["-S", "dirname.i",
 "-o",...],
 "hash": "A5BNh" },
 "infiles": [
 { "name": "dirname.i",
 "order": 1,
 "hash": "SoYcD"
 },
 {
 "name": "g++",
 "order": 0,
 "hash": "A5BNh"
 }
],
 "outfile": "dirname.s"
}

"Thunk" abstraction

• Thunk is an abstraction for
representing a morsel of computation
in terms of a function and its
complete functional footprint.

• Thunks can be forced anywhere, on
the local machine, or on a remote
VM, or inside a lambda function.

27

{ "function": { "exe": "g++",
 "args": ["-S", "dirname.i",
 "-o",...],
 "hash": "AsBNh" },
 "infiles": [
 { "name": "dirname.i",
 "order": 1,
 "hash": "SoYcD"
 },
 {
 "name": "g++",
 "order": 0,
 "hash": "ts0sB"
 }
],
 "outfile": "dirname.s"
}

Execution

• Generating the dependency graph in terms of thunks: 
gg-infer make

• Forcing the thunk, recursively: 
gg-force --jobs 1000 bin/clang

28

Compiling FFmpeg using gg

29

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

5

10

15

20

25

30

worker #

Fetching the dependencies
Executing the thunk
Uploading the results

 preprocess, compile and assemble
archive, link and strip

job completed

5080 5095 5115
0

5

10

15

20

25

30

tim
e

(s
)

worker #

job completed

archive, link and strip

Evaluation

30

single-core gg (λ)

ffmpeg 9m 45s 35s

inkscape 33m 35s 1m 15s

llvm 1h 16m 18s 1m 11s

gg is open-source software

https://github.com/StanfordSNR/gg

31

https://github.com/StanfordSNR/gg

Takeaways

• The future is granular, interactive and massively parallel.

• Many applications can benefit from this "Laptop Extension" model.

• Better platforms are needed to be built to support "bursty" massively-parallel
jobs.

32

JUST USE GG!

33

https://github.com/StanfordSNR/gg

https://github.com/StanfordSNR/gg

