
Serverless Computing
Function as a Service

Paul Castro, Vatche Ishakian, Vinod Muthusamy and
Aleksander Slominski

Outline

• Cloud Computing Evolution

• What is Serverless

• What makes Serverless attractive
• Scalability
• Management
• Cost

• Type of applications for Serverless

• Current Platforms for Serverless
• Lambda, Google Functions,

OpenWhisk, OpenLambda,
Functionless from Kubernetes

• Serverless Architecture
(OpenWhisk)

• From what is publically available

• Programming Model
• Triggers, actions, rules, chains

• Research Challenges and
Questions

• Hands-on exercises (second part)

Bare Metal

PaaS Container Orchestrators

IaaS

Evolution Of Serverless

Monolithic Application

Break-down into
microservices

Make each micro service
HA

Protect against regional
outages

Region A Region B

Explosion in number of
containers / processes:

Increase of infrastructure
cost footprint

Increase of operational
management cost and
complexity

Bare Metal

PaaS Container Orchestrators

IaaS

Enter Serverless

Serverless

a cloud-native platform

for

short-running, stateless computation

and

event-driven applications

which

scales up and down instantly and automatically

and

charges for actual usage at a millisecond granularity

What is Serverless?

Runs code only on-demand on a
per-request basis

Serverless
deployment &
operations model No servers Just code

Server-less means no servers?
Or worry-less about servers?

Runs code in response to events

Event-programming
model

What triggers code execution?

FaaS market is growing quickly

Source: FaaS Market - Global Forecast to 2021 - study by MarketsAndMarkets (http://www.marketsandmarkets.com/)

http://www.marketsandmarkets.com/

FaaS market is growing quickly

Source: FaaS Market - Global Forecast to 2021 - study by MarketsAndMarkets (http://www.marketsandmarkets.com/)

http://www.marketsandmarkets.com/

Google Search Trend over time

Why is Serverless attractive?

• Making app
development & ops
dramatically faster,
cheaper, easier

• Drives infrastructure
cost savings

Source: Jason McGee, IBM; Serverless Conference 2017.

Key factors for infrastructure cost savings

Data
processing

http://ecc.ibm.com/case-
study/us-en/ECCF-CDC1
2387USEN

10x faster
90% less

cost

http://ecc.ibm.com/case-study/us-en/ECCF-CDC12387USEN
http://ecc.ibm.com/case-study/us-en/ECCF-CDC12387USEN
http://ecc.ibm.com/case-study/us-en/ECCF-CDC12387USEN
http://ecc.ibm.com/case-study/us-en/ECCF-CDC12387USEN

Microservices

Mobile Backends

IoT

Modest Stream Processing

Bots, ML Inferencing

Serverless is good for
short-running
stateless
event-driven

Serverless is not good for
long-running
stateful
number crunching

Databases

Deep Learning Training

Spark/Hadoop Analytics

Heavy-Duty Stream Analytics

Numerical Simulationf(x)

What is Serverless good for?

Service integration Video Streaming

Current Platforms for Serverless

Azure Functions

AWS Lambda

Kubernetes

Google Functions

Red-Hat

Apache OpenWhisk Serverless Architecture

Apache OpenWhisk:
High-level serverless programming model

Trigger

Rule

Action

Package

language support to
encapsulate, share, extend code

first-class
event-driven
programming
constructs

first-class functions
compose via sequences

docker
containers as
actions

all constructs first-class
— powerful extensible
 language

A Action: a stateless function
 (event handler)

Action: javascriptA

function main(params) {
 console.log(“Hello “ + params.name);
 return { msg: “Goodbye “ + params.name) };
}

Action: PythonA

def lambda_handler(event, context):
 print("hello world")

Action: SwiftA

func main(params:[String:Any]) -> [String:Any] {
var reply = [String:Any] ()
if let name = params[“name”] as? String {

print(“Hello \(name)”)
reply[“msg”] = “Goodbye \(name)”

}
return reply

}

Action: sequenceA

Trigger: a class of events (feed)

AWS Lambda Trigger Sources

Source: Deep Dive into AWS Lambda, Vyom Nagrani , Manager Product Management, AWS Lambda, AWS Online Tech Talks, January 2017.

T A
event event handler

R Rule: a mapping from a Trigger to an Action

Rule

Apache OpenWhisk: Step 1. Entering the system

Edge
VMEdge

VM

Edge VM

Edge
VM
Edge
VM

Master VM

controller

Why

POST /api/v1/namespaces/myNamespace/actions/myAction

?
• SSL termination
• Load Balancing
• Blue/Green continuous delivery

Master VM

controller

Apache OpenWhisk: Step 2. Handle the request

Master VM

kafka
SDK

couchDB
SDK

spray
DSL

load
balancer

consul
SDK

data
modelsauthcaching

Apache OpenWhisk: Step 2. Handle the request

actors

controller

Apache OpenWhisk: Step 3. Authentication +
Authorization

scala

kafka
SDK

couchDB
SDK

spray
DSL

load
balancer

consul
SDK

data
models

authcaching

external
auth

• Cloudant: hosted CouchDB
• plug-in structure for custom

authentication module

actors

controller

Authorization: Basic QWxhZGRpbjpPcGVuU2VzYW1l

Apache OpenWhisk: Step 4. Get the action

scala

kafka
SDK

couchDB
SDK

spray
DSL

load
balancer

consul
SDK

data
models

authcaching

• check resource limits
• actions stored as documents in CouchDB

• binaries as objects (attachments)

actors

controller

Apache OpenWhisk: Step 5. Looking for a home

scala

kafka
SDK

couchDB
SDK

spray
DSL

load
balancer

consul
SDK

data
models

authcaching

controller

Load balancer: find a slave to execute
Slave health, load stored in consul

• Sequentially consistent KV store
• Replication, Fault Tolerance
• Health Check / Monitoring utilities

Why ?

actors

Apache OpenWhisk: Step 6. Get in line!

scala

kafka
SDK

couchDB
SDK

spray
DSL

load
balancer

consul
SDK

data
models

authcaching

invoker

Why ?
• High throughput fault-tolerant queues
• Point-to-point messages via topics

• explicit load balancing

Post request to execute to queue in

actors

Master VM

Master VM Slave VM

controller

Slave VM

invoker

Apache OpenWhisk: Step7. Get to Work!

Slave VM

Apache OpenWhisk: Step 7. Get to work!

scala

kafka
SDK

couchDB
SDK

docker
utilities

container
pool

consul
SDK

data
models

caching

invoker

bound to
user action

• each user action gets it own container (isolation)
• containers may be reused
• container pool allocates and garbage collects containers

stem cell

actors

User action containers

invoker

container
pool

cold start stem cell
 container

Docker
run

HTTP
POST
/init

HTTP
POST
/runwarm

container

Apache OpenWhisk: Step 8. Store the results.

scala

kafka
SDK

couchDB
SDK

docker
utilities

container
pool

consul
SDK

data
models

caching

invoker

action
container

HTTPResponse

logs on filesystem

actors

Additional architectural concerns for
Serverless for service providers

• Cold start problem
• Keep invokers ready (“stem cell”) or running (“warm”) after invocation
• Tradeoff with latency and resource reservation

• Auto scale
• Add to and remove from the invoker pool
• Hibernate when idle

• Fine-grained billing
• Overhead of metering
• Choice of which resources to bill (CPU, memory, network, …)
• Understandable billing policy (simple vs detailed)?

Related work

• Reactive programming
• Event-based applications
• Stream processing systems
• Dataflow programming
• Workflows and business processes
• Service composition
• Service oriented architectures
• many more ...

Future of Serverless:
Research Challenges and Questions

Serverless as next step in Cloud Computing?

• Cost - pay-as-you-go is enough?
• Server-less - can servers be really hidden?
• Problem of state: stateless, state in other place, or state-ful

supported in FaaS?
• Security - no servers!
• Legacy systems and serverless?

• Hybrid model?

Cloud
computing:
server-less vs
server-aware?

Programming model(s) for Serverless?

• Tools
• Deployment
• Monitoring and debugging

• Short-lived functions, scaling to large invocations,
• Looking for problems is like finding needles in ever growing haystack?

• Serverless IDEs?
• Decompose micro-service into FaaS?

• Code granularity is function?
• Managing state inside and outside FaaS
• Concurrency, recovery semantics, transactions?

Open Problems - how FaaS fits into cloud?

• Just another *aaS?
• Can different cloud computing service models be mixed?
• Can there be more choices for how much memory and CPU can be

used by serverless functions?
• Does serverless need to have IaaS-like based pricing?
• What about spot and dynamic pricing with dynamically changing

granularity?

Open Problems: new tooling needed?

• Granularity of serverless is much smaller than traditional server
based tool

• Debugging is much different if instead of having one artifact (a
micro-service or traditional monolithic app) developers need to
deal with a myriad of smaller pieces of code …

• That haystack can grow really big really fast ...

Open Problems: can “legacy” code be made
to run serverless?

• Today the amount of existing (“legacy”) code that must continue
running is much larger than the new code created specifically to
run in serverless environments

• The economical value of existing code represents a huge
investment of countless hours of developers coding and fixing
software

• Therefore, one of the most important problems may be to what
degree existing legacy code can be automatically or
semi-automatically decomposed into smaller-granularity pieces to
take advantage of these new economics?

Open Problems: is serverless fundamentally
stateless?

• Is serverless fundamentally stateless?
• Current serverless platforms are stateless will there be stateful

serverless services in future?
• Will there be simple ways to deal with state?
• Can there be serverless services that have stateful support built-in

• And with different degrees of quality-of-service?

Open Problems: patterns for building
serverless solutions?

• Combine low granularity basic building blocks of serverless
(functions, actions, triggers, packages, ...) into bigger solutions?

• How to decompose apps into functions so that they user resources
optimally?

• Are there lessons learned that can be applied from OOP design
patterns, Enterprise Integration Patterns, etc.?

Open Problems: serverless beyond
traditional cloud of servers?

• IF functions is running outside of data-center is it serverless?
• Cost, scalability, ...

• Internet of Things (IoT) will have many small devices each capable
of running small amount of code - like functions in serverless?

• New domains, new concerns?
• For example for IoT energy usage may be more important than speed?

• Are Blockchain smart contracts server-less?
• For example when Ethereum users are running smart contracts they get

paid for the “gas” consumed by the code, similar to fuel cost for an
automobile but applied to computing (no need for data-center!)

Beyond tutorial

• Workshop afternoon with papers and panel discussion

• Slack channel for research discussions?

• And more in our chapter in upcoming book "Research Advances in
Cloud Computing”

• https://www.springer.com/us/book/9789811050251#aboutBook

https://www.springer.com/us/book/9789811050251#aboutBook
https://www.springer.com/us/book/9789811050251#aboutBook

Backup

AWS Lambda Use Case

Serverless Architecture (Apache OpenWhisk)

