M

)

FERMYON

Building new serverless
primitives with Wasm

@,

Radu Matei

CTO & co-founder of Fermyon

Creator of the Spin project

Maintainer and contributor to several cloud-native
projects, at the intersection of distributed systems,

security, and developer experience

Loves bicycles, classical music, and bubble tea

@radu-matei.com on Bsky, https://radu-matei.com, radu@fermyon.com

https://radu-matei.com

Fermyon.com

started Fermyon in November '21 to work on Wasm
built the Spin open source project

Fermyon Cloud as the managed service for running
serverless Wasm

SpinKube and more cloud native tooling for Wasm
core contributors and maintainers to ecosystem

projects such as Wasmtime

Serverless: A coding pattern in
which the developer does not
Write a server process.

IThe entry point is an event
handler function.

FERMYON

-rom VVVIs to Functions
‘ Function

Microservice
‘ Function
‘ Function

Microservice >

‘ Function
‘ Function

ervice
‘ Function

FERMYON

Developers love* writing Functions

Why Faas:

» spending time writing application logic, not deploying servers

* not thinking about scaling up or down, and not being charged

for idle resources**

*For the right use cases

**Unless on a platform that still uses VMs and "dedicated plans"

BUT...

 why do I have to rebuild my "serverless function" for ARM64?

* why do I experience 200+ms cold starts?

» once I build the function for this platform, can I run it elsewhere?

the developer experience can be a pain*

*Will come back to developer experience

The Function is still executed in a
microVIVl or container

 most popular FaaS platforms still use microVMs or containers to

execute user functions.

¢ portablllty and binary size (and by extension, cold starts) W€ dre experiencing
with these platforms are stemmed in the unit of execution:

microVMs or containers.

Cre
| |

ciency tor
serverless

As a platform builder using
microVMs or containers:

* overprovision and pass the
cost to end users

OR

* underprovision and pass the
cold starts to end users

©
=
@
£
3
O

. Startup time

|| Fully Utilized
[:I Overprovisioned

Provisioned Capacity

—Triciency tor
Server‘ eSS . Startup time

|| Fully Utilized
D Overprovisioned

How do we make the shape of
cloud compute better match
the demand of this curve?

>
e
O
(4
Q
(4]
O
©
Q
o
9
o
>
O
—
(R

And by extension, pass BOTH
cost savings AND fast startup
to end users?

Thisis a bigissue already tor a single-
region datacenter...

The problem becomes exponential if you need to schedule a function
in hundreds of regions around the world and execute it as close as

possible to an end user request, as fast as possible.

Do we really need microVMs ana
containers for FaaS?

From a developer perspective:
* if you need a full Linux OS in your function: YES.

* but for a growing humber of use cases: NO (and platforms like Cloudflare Workers

show us that with the right API surface, developers can achieve a lot without a full Linux OS available in their

function)

ad another unit of
execution for FaaS?

) FERMYON

O

What is WebAssembly (Wasm)?

* a target for compiling programs written in C/C++, Rust, Python,
JavaScript, Kotlin, and more into a compact and portable

intermediate binary format

* a runtime for executing these binaries in an isolation sandbox

What is WebAssembly (Wasm)?

It to port programs such as Photoshop or Google

it evolved to run in other places, outside the

Why Wasm Tor serverless

* jsolation sandbox (Wasm code does not have access to data outside its own linear memory or to

APIs unless allowed by the host)

» cross platform and cross architecture portability (once compiled, a Wasm

component can run on Linux, Windows, macOS, and on x86, ARMé4, RISC-V)

 fast sta rtUp and near-native execution (Wasm components start in less than 1

millisecond if available on disk, and can be as little as a few MBs or less)

* can support a wide range of programming languages (write your functions

in Rust, JavaScript, Python, Go, or more)

Academic research for Wasm and

@ Cornell University

ariv

1-7 of 7 results for all: serverless webassembly

— aess v

[pdf, other] (EEEEE
Lightweight, Secure and Stateful Serverle:
Authors: T
Abstract: _.for Trusted Exe eterogeneo
piled binaries and/or WebA) secure, perform

Submitted 25 Octot

[pdf, other] (RN

FunLess: Functions-as-a-Service for Private Edge Cloud Systems

Authors; [
Abstract: .. FunLess, a Function-as-a-Service (
xtending the cc of serverless comput
Inlike existing sof rely on containe

Submitted 024; originally announced May 20

3, arX 04263 [pdf, other] EEEID
Energy-Efficient Deployment of Stateful FaaS Vertical Applications on Edge Data Networks

Authors; e

Abstract: ..which is particularly appe
ustomer services. Even if serverless

because of the need to support stateful t
Submitted 4 originally announced

Faabric: Fine-Grained Distribution of Scientific Workloads in the Cloud

Authors: Simor
Abstract r underutilised resource: viders cannot re
\ applica ts programming model is incompatible
entific applicatio
Submitted 22 Fet 23, originally announced Fe

Comments:

a 1
WearMask: Fast In-browser Face Mask Detection with Serverless Edge Computing for COVID-19
Authors: Zek Le v
¢ hardware, impeding public accessib

Abstract
gnition of n

Submitted originatty announced |

Journal ref: & maging

- 0 EEES N
A lightweight design for serverless Function-as-a-Service

Authors:
Abstract: .are ba nstrate that
htweight high-le d enable finely
ained pay
Submitted
Comments:

[pdf, other) (ZEEE

Faasm: Lightweight Isolation for Efficient Stateful Serverless Computing

~aaS

Single binary tool Many languages No boilerplate required Work with data

=

One tool for Go, Rust, C#, Java, Use the template library, Spin triggers get you Use Postgres, Redis and
development and JavaScript, or any with or provide your own and right to the important file storage to persist
runtime Wasm+WASI support share components part your data

Spin

The open source tool for building WebAssembly serverless apps

4 A
With Spin, you can create a new Start a nevwior i (main) $ spin new
serverless application (powered by oneor > < Pick a template to start your proje

http—-go (HTTP request handler usir

>
more serverless functions) with just a few B T request handler L

http-rust (HTTP request handler us

Build uour a http-zig (HTTP request handler us:
commands. - PP kv-explorer (Explore the contents
_ . .

redis-go (Redis message handler us

7
redis-rust (Redis message handler
Run your app

N\

e

https://developer.fermyon.com/spin

https://developer.fermyon.com/spin

=€) @emenspn wssk Q peDrosen)@ CD@m)E

<> Code (©) Issues 255 % Bugs 14 I Pullrequests 25 (J) Discussions () Actions [Projects 3 [0 Wiki {8 Settings [
spin Public. | DEditbins - ©Unwatch 45 - YFork 257 - o Stared 55k

¥ 55 Branches > 98 Tags Q Gotofile t \ - Spin is the open source developer

tool for building and running

serverless applications powered b

0 itowlson Merge pull request #2937 from mikkelhegn/static-fil... v 666faa9-4daysago) 4,086 Commits PP P y
WebAssembly.

B _cargo Add taplo.toml and format tomls 4 months ago @ developer.fermyon.com/spin

I® .devcontainer Remove bindle last year serverless webassembly spin

i) § fermyon

o .github Merge pull request #2878 from michelleN/issuef... last week

B® .vscode Update recommended extensions to point at the... 4 months ago [Readme
&fs Apache-2.0 license

M crates Relax wasi 0.2 constraint 5 days ago @ Code of conduct

B cross set CROSS_SYSROOT=/ to fix cross-rs openssl issue 10 months ago 88 Security policy
A~ Activity

B deploy ref(docs): update to run/deploy via OCI last year)
[= Custom properties

e docs A few fixes after yesterday's mergepalooza 4 months ago Yy 5.5k stars
) & 45 watching
ba examples chore(*): post-3.0.0 version bump 3 weeks ago

¥ 257 forks

M hack/o11y-stack feat(telemetry): Send logs to OTel collector direct... 7 months ago 3 3years old

BB src Unhide app splitting flag 2 months ago © v3.0.0

3 weeks ago

FERMYON

https://github.com/fermyon/spin

)

FERMYON

O

https://github.com/fermyon/spin

radu@asahi # default in github.com/misc/hk
localhost:3000 -c 512
Bombarding http://localhost:3000 for 10s using 512 connection(s)

Done!

Statistics Avg Stdev Max
Reqs/sec 138117.91 13199.46 161568.99
Latency 3.70ms 1.36ms 105.99ms
HTTP codes:

Ixx - @, 2xx - 1381174, 3xx - @, 4xx - O, B5xx - O
others - 0
Throughput: 21.33MB/s

https://github.com/fermyon/spin FERMYON

https://github.com/fermyon/spin

O sPIN

Bring Your Code

@ ®
TS @
@ v

Supports many of the most

popular programming languages

(spin new)

The Developer Tool for Serverless WebAssembly

Serverless Made Simple

-===v.- O @ . Kuberenetes Cluster

with Containerd
Docker Hub Sigstore

s B V

Key/Value HashiCorp FERMYON

Storage Vault

Redis

Works with developer tools & registries. spin cloud deplog

Adds internal & external storage

(spin build) (spin up) http://localhost:3000

What(?)s new in Spin®?

Al

Serverless Al »

Execute inferencing for LLMs directly

from serverless apps.

HTTP & Redis Triggers

Spin has a built-in HTTP web server
and pub-sub Redis triggers, routing
requests and messages to

components.

BUILD FULL-STACK APPLICATIONS

SQLite Databases

Spin has a built-in database, which is

always available - no Ops required.

xS

Relational Database Storage

'‘Bring your own DB' support for
MySQL and PostgreSQL, where you
host and manage the database

outside of Spin.

B

Key/Value Store

Quickly persist data in your apps

with Spin's in-built local KV store.

Variables & Secrets

Dynamic app variables mean a
simpler experience for rotating
secrets, updating API endpoints, and

more.

Once you build your Spin app...

* run it with “~spin up® on your own servers

» deploy it to Fermyon Cloud, soon run it globally

» deploy it to Kubernetes using the CNCF SpinKube project
* run it in other orchestrators such as Nomad or OpenShift

* run it directly in Docker Desktop using " docker run’

Wasm and the component model

* Spin is built on top Wasm components, defined using WIT (wasm

Interface Types)

« components are the core unit of execution, and encapsulate the
function
« components can be statically analyzed and their capabilities

allowed or declined

A Spin platform

VO 00 N o0 O B WN B

P R R R R R
O~ W N P ®

package fermyon:spin(3.0.0;

/// The full world of a guest targeting an http-trigger
world http-trigger {

include platform;

export wasi:http/incoming-handler(9.2.0;

/// The imports needed for a guest to run on a Spin host
world platform {

include fermyon:spin/platform®@2.0.0;

include wasi:keyvalue/imports(0.2.0-draft2;

import spin:postgres/postgres(®3.0.0;

import wasi:config/store(@.2.0-draft-2024-09-27;

A Spin function

1 package root:root;

world root-{
“import wasi:io/...(0.2.0;
-import wasi:clocks/...(0.2.0;
“import wasi:http/...(00.2.0;
~import wasi:config/...(0.2.90
“import wasi:cli/...(0.2.0;

O 00 NN OO0 O &~ W BN

~import wasi:filesystem/...(0.2.0;

10 - -import wasi:sockets/...(0.2.0; -

11 - -import wasi:random/...(9.2.0;

12 - -import wasi:keyvalue/...(©0.2.0-draft2;

14 - -import fermyon:spin/...(23.0.0;

16 - -export wasi:http/incoming-handler(®0.2.0;

What about multi-region?

Load Balancer:

\What about isolation®

Security and Correctness in Wasmtime

Sep 13, 2022 Nick Fitzgerald

The essence of software engineering is making trade-offs, and sometimes engineers
even trade away security for other priorities. When it comes to running untrusted
code from unknown sources, however, exceptionally strong security is simply the bar
to clear for serious participation: consider the extraordinary efforts that Web browser
and hypervisor maintainers take to preserve their systems’ integrity. WebAssembly
runtimes also run untrusted code from untrusted sources, and therefore such efforts
are also a hard requirement for WebAssembly runtimes.

https://bytecodealliance.org/articles/security-and-correctness-in-wasmtime
https://bytecodealliance.org/articles/security-and-correctness-in-wasmtime

What about stronger isolation®

<> Code

o @ hyperlight-dev / hyperlight 2.2k

() Issues 8

@ hyperlight pusic

¥ main ~

A dbinz Fix otlp tracing (#61) @@

¢ v | 8

.devcontainer
.github

dev

docs

hack
proposals

src
.editorconfig

.gitignore

% Bugs 1

¥ 12 Branches © 2Tags

Q Type (7] to search

19 Pullrequests 8 () Actions > Releases 2

& Watch 16

< [+ .

) 69 Commits

Q Gotofile

23192b7 - 5 days ago

remove .vscode settings (#66) 2 weeks ago
Add check in CI to make sure cargo feature 'cras... last week
publish to crates.io last month
Fix otlp tracing (#61) 5 days ago
The initial Hyperlight Commit # last month
[docs] small patch to HIP template 5 days ago
docs] small patch to HIP template
Fix Otlp tracing (#61 <daiochiariene@gmaiLcoms 5 days ago
The initial Hyperlight Commit # last month
remove .vscode settings (#66) 2 weeks ago

last month

hd

(3] + -

% Fork 76 -

Hyperlight is a lightweight Virtual

[]
O n el

7% star 2.2k

Machine Manager (VMM) designed to

be embedded within applications. It
enables safe execution of untrusted
code within micro virtual machines
with very low latency and minimal

overhead.

O Readme

&8 Apache-2.0 license
& Code of conduct
&8 Security policy

A~ Activity

(= Custom properties
v 2.2k stars

® 16 watching

% 76 forks

[4weeksold

.....

https://github.com/hyperlight-dev/hyperlight
https://github.com/hyperlight-dev/hyperlight

-xecuting Wasm Functions at scale

* we can control the amount of memory, CPU time, network
bandwidth a Function can use, and terminate at any given point

in time

* we can centrally compile Wasm ahead-of-time to the specific
OS/arch of data plane nodes and distribute highly optimized

machine code

-xecuting Wasm Functions at scale #2

* we optimistically schedule thousands* of Functions on any given

node in Fermyon Cloud (use cases favor short, bursty executions compared to long-running

functions)

* with a mix of Linux x86 and ARMé64 nodes, depending on

efficiency, region availability

* we suspend in memory any function waiting for I/O such as file

access or outbound network calls

Executing Wasm Functions at scale #35

» for high core count machines, we can pin the Wasm runtime on a

subset of cores to minimize IPIs

Check out Spin and SpinKube.dev!

Get started with Spin and SpinKube!

.com/fermyon/spin

.com/spinkube

FERMYON

https://github.com/fermyon/spin
https://github.com/spinkube

	Slide 1
	Slide 2
	Slide 3
	Slide 4: Serverless: A coding pattern in which the developer does not write a server process. The entry point is an event handler function.
	Slide 5: From VMs to Functions
	Slide 6
	Slide 7
	Slide 8
	Slide 9: Efficiency for serverless
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25: What’s new in Spin?
	Slide 26
	Slide 27
	Slide 28: A Spin platform
	Slide 29: A Spin function
	Slide 30: What about multi-region?
	Slide 31: What about isolation?
	Slide 32: What about stronger isolation?
	Slide 33
	Slide 34
	Slide 35
	Slide 36

