
Building new serverless
primitives with Wasm

D e c e m b e r 2 02 4

Radu Matei

• CTO & co-founder of Fermyon

• Creator of the Spin project

• Maintainer and contributor to several cloud-native

projects, at the intersection of distributed systems,

security, and developer experience

• Loves bicycles, classical music, and bubble tea

@radu-matei.com on Bsky, https://radu-matei.com, radu@fermyon.com

https://radu-matei.com

Fermyon.com
• started Fermyon in November '21 to work on Wasm

• built the Spin open source project

• Fermyon Cloud as the managed service for running

serverless Wasm

• SpinKube and more cloud native tooling for Wasm

• core contributors and maintainers to ecosystem

projects such as Wasmtime

Serverless: A coding pattern in
which the developer does not
write a server process.

The entry point is an event
handler function.

From VMs to Functions

Developers love* writing Functions

Why FaaS:

• spending time writing application logic, not deploying servers

• not thinking about scaling up or down, and not being charged

for idle resources**

*For the right use cases

**Unless on a platform that still uses VMs and "dedicated plans"

BUT...

• why do I have to rebuild my "serverless function" for ARM64?

• why do I experience 200+ms cold starts?

• once I build the function for this platform, can I run it elsewhere?

• the developer experience can be a pain*

*Will come back to developer experience

• most popular FaaS platforms still use microVMs or containers to

execute user functions.

• portability and binary size (and by extension, cold starts) we are experiencing

with these platforms are stemmed in the unit of execution:

microVMs or containers.

The Function is still executed in a
microVM or container

Efficiency for
serverless

As a platform builder using
microVMs or containers:

• overprovision and pass the
cost to end users

OR

• underprovision and pass the
cold starts to end users

How do we make the shape of
cloud compute better match
the demand of this curve?

And by extension, pass BOTH
cost savings AND fast startup
to end users?

Efficiency for
serverless

The problem becomes exponential if you need to schedule a function

in hundreds of regions around the world and execute it as close as

possible to an end user request, as fast as possible.

This is a big issue already for a single-
region datacenter...

From a developer perspective:

• if you need a full Linux OS in your function: YES.

• but for a growing number of use cases: NO (and platforms like Cloudflare Workers

show us that with the right API surface, developers can achieve a lot without a full Linux OS available in their

function)

Do we really need microVMs and
containers for FaaS?

What if we had another unit of
deployment and execution for FaaS?

Enter Wasm
Or WebAssembly

• a target for compiling programs written in C/C++, Rust, Python,

JavaScript, Kotlin, and more into a compact and portable

intermediate binary format

• a runtime for executing these binaries in an isolation sandbox

What is WebAssembly (Wasm)?

• originally built to port programs such as Photoshop or Google

Earth to the browser, it evolved to run in other places, outside the

browser

What is WebAssembly (Wasm)?

• isolation sandbox (Wasm code does not have access to data outside its own linear memory or to

APIs unless allowed by the host)

• cross platform and cross architecture portability (once compiled, a Wasm

component can run on Linux, Windows, macOS, and on x86, ARM64, RISC-V)

• fast startup and near-native execution (Wasm components start in less than 1

millisecond if available on disk, and can be as little as a few MBs or less)

• can support a wide range of programming languages (write your functions

in Rust, JavaScript, Python, Go, or more)

Why Wasm for serverless

Academic research for Wasm and FaaS

Spin

With Spin, you can create a new

serverless application (powered by one or

more serverless functions) with just a few

commands.

https://developer.fermyon.com/spin

The open source tool for building WebAssembly serverless apps

https://developer.fermyon.com/spin

https://github.com/fermyon/spin

https://github.com/fermyon/spin

Demo time
https://github.com/fermyon/spin

https://github.com/fermyon/spin

https://github.com/fermyon/spin

https://github.com/fermyon/spin

What’s new in Spin?

• run it with ` spin up` on your own servers

• deploy it to Fermyon Cloud, soon run it globally

• deploy it to Kubernetes using the CNCF SpinKube project

• run it in other orchestrators such as Nomad or OpenShift

• run it directly in Docker Desktop using ` docker run`

Once you build your Spin app...

• Spin is built on top Wasm components, defined using WIT (Wasm

Interface Types)

• components are the core unit of execution, and encapsulate the

function

• components can be statically analyzed and their capabilities

allowed or declined

Wasm and the component model

A Spin platform

A Spin function

What about multi-region?

What about isolation?

bytecodealliance.org/articles/security-and-correctness-in-wasmtime

https://bytecodealliance.org/articles/security-and-correctness-in-wasmtime
https://bytecodealliance.org/articles/security-and-correctness-in-wasmtime

What about stronger isolation?

github.com/hyperlight-dev/hyperlight

https://github.com/hyperlight-dev/hyperlight
https://github.com/hyperlight-dev/hyperlight

• we can control the amount of memory, CPU time, network

bandwidth a Function can use, and terminate at any given point

in time

• we can centrally compile Wasm ahead-of-time to the specific

OS/arch of data plane nodes and distribute highly optimized

machine code

Executing Wasm Functions at scale

• we optimistically schedule thousands* of Functions on any given

node in Fermyon Cloud (use cases favor short, bursty executions compared to long-running

functions)

• with a mix of Linux x86 and ARM64 nodes, depending on

efficiency, region availability

• we suspend in memory any function waiting for I/O such as file

access or outbound network calls

Executing Wasm Functions at scale #2

• for high core count machines, we can pin the Wasm runtime on a

subset of cores to minimize IPIs

Executing Wasm Functions at scale #3

Check out Spin and SpinKube.dev!

Spin: https://github.com/fermyon/spin

SpinKube: https://github.com/spinkube

Get started with Spin and SpinKube!

https://github.com/fermyon/spin
https://github.com/spinkube

	Slide 1
	Slide 2
	Slide 3
	Slide 4: Serverless: A coding pattern in which the developer does not write a server process. The entry point is an event handler function.
	Slide 5: From VMs to Functions
	Slide 6
	Slide 7
	Slide 8
	Slide 9: Efficiency for serverless
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25: What’s new in Spin?
	Slide 26
	Slide 27
	Slide 28: A Spin platform
	Slide 29: A Spin function
	Slide 30: What about multi-region?
	Slide 31: What about isolation?
	Slide 32: What about stronger isolation?
	Slide 33
	Slide 34
	Slide 35
	Slide 36

