
WoSC 10 — 10th International Workshop on Serverless Computing
December 2—3, 2024 — Hong Kong

Energy-Aware Scheduling of a Serverless
Workload in an ISA-Heterogeneous Cluster

Simon Arys, Romain Carlier, and Etienne Rivière

UCLouvain, Belgium
etienne.riviere@uclouvain.be

WoSC 10 — Arys, Carlier, and Rivière — etienne.riviere@uclouvain.be

ISA heterogeneity
• x86: de facto standard in data centers (~80/90% of the market)

• Intel Xeon, AMD EPYC (Zen), …

• CISC (Complex Instruction Set)—high performance per Hz

• Increasingly more ARM CPUs
• RISC (Reduced Instruction Set)—high performance per Watt

• ARM-based cloud offerings by Amazon, Google, and Azure (announced)

2

Google’s Axion ARM processors
Azure — May 2024

AWS — since 2018

Google — Sep. 2024

mailto:etienne.riviere@uclouvain.be

WoSC 10 — Arys, Carlier, and Rivière — etienne.riviere@uclouvain.be

Serverless: An opportunity

• Different workloads have different performance and
energy consumption on different CPUs
💡 Schedule workloads on x86 or ARM, depending on

performance and energy efficiency

• Serverless model ❤ heterogeneity

• Decouples code from infrastructure, statelessness

• Functions can run on different hardware interchangeably
• Interpreted (node.js, python) — different interpreters

• Bytecode (Java, WebAssembly) — different virtual machines

• Native (C++, Rust) — multiple compilation targets

➡ Running on ARM or x86 can be a runtime decision

3

Cloud computing
Another trend

Function as a Service (FaaS) paradigm is
increasingly used in data centers.
Also known as Serverless

04

Simplified
Development

Pay-per-use
model

Stateless Event-driven
execution

Functions can be scheduled to any machine
interchangeably, thanks to those being
stateless and ISA-independent

3/23

Cloud computing
Another trend

Function as a Service (FaaS) paradigm is
increasingly used in data centers.
Also known as Serverless

04

Simplified
Development

Pay-per-use
model

Stateless Event-driven
execution

Functions can be scheduled to any machine
interchangeably, thanks to those being
stateless and ISA-independent

3/23

Cloud computing
Another trend

Function as a Service (FaaS) paradigm is
increasingly used in data centers.
Also known as Serverless

04

Simplified
Development

Pay-per-use
model

Stateless Event-driven
execution

Functions can be scheduled to any machine
interchangeably, thanks to those being
stateless and ISA-independent

3/23

mailto:etienne.riviere@uclouvain.be

WoSC 10 — Arys, Carlier, and Rivière — etienne.riviere@uclouvain.be

Our research question

• Can we schedule a serverless workload onto a
heterogeneous { x86, ARM } cluster while
• Matching performance requirements (req. / s / function)?

• Reducing overall energy consumption (watt.h)?

4

Measure energy
consumption of

functions

Model energy/
performance of

functions on
different ISA

Schedule
functions on

heterogeneous
servers

Evaluate
overall energy
consumption

mailto:etienne.riviere@uclouvain.be

WoSC 10 — Arys, Carlier, and Rivière — etienne.riviere@uclouvain.be

Our target hardware

• Cluster of two mid/high-end machines
• Similar price point (8-10K€) mid-2022

• x86 machine: two Xeon CPUs (TDP 350W)

• ARM machine: one Ampere Altra Max CPU (TDP 250W)

• Same other characteristics: 256GB RAM, SSDs, 100 Gbe, …

5

Ampere commercial arguments

mailto:etienne.riviere@uclouvain.be

WoSC 10 — Arys, Carlier, and Rivière — etienne.riviere@uclouvain.be

Methodology overview

6

Training with
function

co-location

Energy and
performance

affinity models
Scheduling

𝜆𝜆𝜆𝜆𝜆𝜆

Serverless functions

Energy and
performance

measurements

Energy and
performance

measurements

x86

ARM

Offline Online

𝜆𝜆𝜆𝜆𝜆𝜆

Target RPS rates

𝜆𝜆𝜆 𝜆𝜆𝜆

🧐 💡 Power usage?

mailto:etienne.riviere@uclouvain.be

WoSC 10 — Arys, Carlier, and Rivière — etienne.riviere@uclouvain.be

Operational assumptions

• The set of functions is known and can be profiled in advance
• At runtime, scheduler receives target workload for each function

• Functions run as processes or containers
• We don’t assume pre-warming or keepalive policies

• High-usage scenarios
• A single server is insufficient to match requested service rates

• Most of the cores used to execute functions

• High degree of function colocation

7

mailto:etienne.riviere@uclouvain.be

WoSC 10 — Arys, Carlier, and Rivière — etienne.riviere@uclouvain.be

Measuring energy

• Runtime phase: global energy consumption of two servers (coarse-grain)
• Obtained from smart PDU (Power Distribution Unit)

• Our “ground truth” of total energy consumption

• Profiling phase: need energy consumption of individual processes (fine-grain)
• CPU-level monitoring ignores the (software) notion of a process

• Need to distribute measured CPU energy between processes

• PowerAPI (https://powerapi.org/)

8

Coarse-grain

Energy efficiency characterisation
Objective : for each function, measure the number of watt-hour consumed per execution on both CPUs

Two categories of energy measurement tools:

CPU and machine level
measurements

Fine-grain

Process, container and
pod level estimations

10/23

Coarse-grain

Energy efficiency characterisation
Objective : for each function, measure the number of watt-hour consumed per execution on both CPUs

Two categories of energy measurement tools:

CPU and machine level
measurements

Fine-grain

Process, container and
pod level estimations

10/23

mailto:etienne.riviere@uclouvain.be
https://powerapi.org/

WoSC 10 — Arys, Carlier, and Rivière — etienne.riviere@uclouvain.be

PowerAPI: workflow

9

Process 1

Process 2

Process 3

CPU

Server

PowerAPI workflow

Open-source project developed by the Spirals research group,
University of Lille and Inria

11/23

Process 1

Process 2

Process 3

PowerAPI Sensor

CPU

PowerAPI workflow

Open-source project developed by the Spirals research group,
University of Lille and Inria

Server

11/23

Process 1

Process 2

Process 3

PowerAPI Sensor

CPU

PowerAPI workflow

Open-source project developed by the Spirals research group,
University of Lille and Inria

PowerAPI Formula

Server

11/23

Process 1

Process 2

Process 3

PowerAPI Sensor

CPU

CPU Power (100W)

PowerAPI workflow

Open-source project developed by the Spirals research group,
University of Lille and Inria

PowerAPI Formula

Server

11/23

Process 1

Process 2

Process 3

PowerAPI Sensor

CPU

CPU Power (100W)

HwPCs for process 1

HwPCs for process 2

HwPCs for process 3

PowerAPI workflow

Open-source project developed by the Spirals research group,
University of Lille and Inria

PowerAPI Formula

Server

HwPC = Hardware Performance Counter (ex: CPU cycles, cache misses, ...) 11/23

Process 1

Process 2

Process 3

PowerAPI Sensor

CPU

CPU Power (100W)

HwPCs for process 1

HwPCs for process 2

HwPCs for process 3

ML models

1 Ghz

PowerAPI workflow

Open-source project developed by the Spirals research group,
University of Lille and Inria

PowerAPI Formula

Server

HwPC = Hardware Performance Counter (ex: CPU cycles, cache misses, ...)

2 Ghz

3 Ghz

11/23

Process 1

Process 2

Process 3

PowerAPI Sensor

CPU

CPU Power (100W)

HwPCs for process 1

HwPCs for process 2

HwPCs for process 3

PowerAPI workflow

Open-source project developed by the Spirals research group,
University of Lille and Inria

PowerAPI Formula

Server

HwPC = Hardware Performance Counter (ex: CPU cycles, cache misses, ...)

ML models

1 Ghz

2 Ghz

3 Ghz

2 GHz

11/23

Process 1

Process 2

Process 3

PowerAPI Sensor

CPU

CPU Power (100W)

HwPCs for process 1

HwPCs for process 2

HwPCs for process 3

PowerAPI workflow

Open-source project developed by the Spirals research group,
University of Lille and Inria

PowerAPI Formula

Server

HwPC = Hardware Performance Counter (ex: CPU cycles, cache misses, ...)

ML models

1 Ghz

2 Ghz

3 Ghz

2 GHz

11/23

Process 1

Process 2

Process 3

PowerAPI Sensor

CPU

Server

Process 1
power (50W)

Process 3
power (35W)

Process 2
power (15W)

CPU Power (100W)

HwPCs for process 1

HwPCs for process 2

HwPCs for process 3

PowerAPI Formula

ML models

PowerAPI workflow

Open-source project developed by the Spirals research group,
University of Lille and Inria

HwPC = Hardware Performance Counter (ex: CPU cycles, cache misses, ...)

1 Ghz

2 Ghz

3 Ghz

2 GHz

11/23

• PowerAPI collects multiple sensors from CPU and builds models for different frequency levels

• CPU power consumption is split between processes according to the models

• A 10+ year project led by Inria, France

mailto:etienne.riviere@uclouvain.be

WoSC 10 — Arys, Carlier, and Rivière — etienne.riviere@uclouvain.be

Our Additions to PowerAPI

• PowerAPI focuses on x86 CPUs

• Support for Ampere’s Altra Max ARM CPU
• CPU power consumption: connect to Ampere’s SMpro system

control processor (instead of RAPL on x86)

• Cores frequency and hardware performance counters:
Collaborative Processor Performance Control (CPPC) driver in
the Linux kernel (instead of Model-Specific Registers on x86)

• Training of PowerAPI models for the Altra Max
• Hardware performance counters correlated with process energy

consumption: CPU cycles, retired instructions, and stalled cycles

10

mailto:etienne.riviere@uclouvain.be

WoSC 10 — Arys, Carlier, and Rivière — etienne.riviere@uclouvain.be

Energy- and performance affinity models

• Every function in the training set must be probed for
• Its performance (executions/second, on one core)

• Its energy efficiency (watt.hour/execution) using PowerAPI

• Measuring functions in isolation ignores the impact of co-location
• Shared resources (memory bandwidth, last-level caches, etc.)

• Testing all possible combinations is intractable

• Measure functions as bags of randomly chosen functions
• Each function is represented in at least groups ()

G N
Gmin G = 20, N = 8, Gmin = 2

11

𝜆𝜆𝜆𝜆𝜆𝜆

Serverless functions
𝜆𝜆𝜆

𝜆𝜆𝜆

𝜆𝜆𝜆

 groups of
 functions

G = 20
N = 8

x86

ARM
𝜆𝜆𝜆𝜆𝜆

𝜆𝜆𝜆𝜆𝜆

𝜆𝜆𝜆𝜆𝜆

Matrix where is
throughput of
function on server

E Eij

j i

Matrix where is
energy cost of
function on server

W Wij

j i

mailto:etienne.riviere@uclouvain.be

WoSC 10 — Arys, Carlier, and Rivière — etienne.riviere@uclouvain.be

Affinity-based scheduling
• Assign cores to each function on one of the two servers

• and : energy and performance models

• : throughput requirements, is the number of requests per
second that function must support

• : vector of servers’ capacities, is the number of cores of server

• : boolean matrix, if function deployed on server

• Note: function is deployed to a single server

• : core assignment vector, is the number of cores for function

W E
R Ri

i
C Ci i
D Dij = ⊤ j i

j
A Ai i

12

Requirements (req/s)
<latexit sha1_base64="rHxB4e+pOvK8AhXZph98ar1c8T0=">AAAB6nicbVC7TsNAEFzzDOEVoKQ5EYGoIjtFoIxEQxkeeUiJFZ0v6+SU89m6OyNFVj6BhgKEaPkiOv6GS+ICEkZaaTSzq92dIBFcG9f9dtbWNza3tgs7xd29/YPD0tFxS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfjm5nffkKleSwfzSRBP6JDyUPOqLHSw33f65fKbsWdg6wSLydlyNHol756g5ilEUrDBNW667mJ8TOqDGcCp8VeqjGhbEyH2LVU0gi1n81PnZJzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwms/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0ijYEb/nlVdKqVrxapXZXLdcv8jgKcApncAkeXEEdbqEBTWAwhGd4hTdHOC/Ou/OxaF1z8pkT+APn8wfMQ41n</latexit>

R1
<latexit sha1_base64="rHxB4e+pOvK8AhXZph98ar1c8T0=">AAAB6nicbVC7TsNAEFzzDOEVoKQ5EYGoIjtFoIxEQxkeeUiJFZ0v6+SU89m6OyNFVj6BhgKEaPkiOv6GS+ICEkZaaTSzq92dIBFcG9f9dtbWNza3tgs7xd29/YPD0tFxS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfjm5nffkKleSwfzSRBP6JDyUPOqLHSw33f65fKbsWdg6wSLydlyNHol756g5ilEUrDBNW667mJ8TOqDGcCp8VeqjGhbEyH2LVU0gi1n81PnZJzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwms/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0ijYEb/nlVdKqVrxapXZXLdcv8jgKcApncAkeXEEdbqEBTWAwhGd4hTdHOC/Ou/OxaF1z8pkT+APn8wfMQ41n</latexit>

R1
<latexit sha1_base64="eFw9yTmWPMpWjvs6hkmFQtypQE4=">AAAB6nicbVC7TsNAEFzzDOEVoKQ5EYGoIjtFoIxEQxkeeUiJFZ0v6+SU89m6OyNFVj6BhgKEaPkiOv6GS+ICEkZaaTSzq92dIBFcG9f9dtbWNza3tgs7xd29/YPD0tFxS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfjm5nffkKleSwfzSRBP6JDyUPOqLHSw32/2i+V3Yo7B1klXk7KkKPRL331BjFLI5SGCap113MT42dUGc4ETou9VGNC2ZgOsWuppBFqP5ufOiXnVhmQMFa2pCFz9fdERiOtJ1FgOyNqRnrZm4n/ed3UhNd+xmWSGpRssShMBTExmf1NBlwhM2JiCWWK21sJG1FFmbHpFG0I3vLLq6RVrXi1Su2uWq5f5HEU4BTO4BI8uII63EIDmsBgCM/wCm+OcF6cd+dj0brm5DMn8AfO5w/Nx41o</latexit>

R2
<latexit sha1_base64="eFw9yTmWPMpWjvs6hkmFQtypQE4=">AAAB6nicbVC7TsNAEFzzDOEVoKQ5EYGoIjtFoIxEQxkeeUiJFZ0v6+SU89m6OyNFVj6BhgKEaPkiOv6GS+ICEkZaaTSzq92dIBFcG9f9dtbWNza3tgs7xd29/YPD0tFxS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfjm5nffkKleSwfzSRBP6JDyUPOqLHSw32/2i+V3Yo7B1klXk7KkKPRL331BjFLI5SGCap113MT42dUGc4ETou9VGNC2ZgOsWuppBFqP5ufOiXnVhmQMFa2pCFz9fdERiOtJ1FgOyNqRnrZm4n/ed3UhNd+xmWSGpRssShMBTExmf1NBlwhM2JiCWWK21sJG1FFmbHpFG0I3vLLq6RVrXi1Su2uWq5f5HEU4BTO4BI8uII63EIDmsBgCM/wCm+OcF6cd+dj0brm5DMn8AfO5w/Nx41o</latexit>

R2
<latexit sha1_base64="X/JBgpD1Ix8dlJhWfh+ozmAoZ+k=">AAAB6nicbVDLTgJBEOzFF+IL9ehlItF4IruYoEcSLx7xwSOBDZkdemHC7OxmZtaEED7BiweN8eoXefNvHGAPClbSSaWqO91dQSK4Nq777eTW1jc2t/LbhZ3dvf2D4uFRU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWjm5nfekKleSwfzThBP6IDyUPOqLHSw33vslcsuWV3DrJKvIyUIEO9V/zq9mOWRigNE1Trjucmxp9QZTgTOC10U40JZSM6wI6lkkao/cn81Ck5s0qfhLGyJQ2Zq78nJjTSehwFtjOiZqiXvZn4n9dJTXjtT7hMUoOSLRaFqSAmJrO/SZ8rZEaMLaFMcXsrYUOqKDM2nYINwVt+eZU0K2WvWq7eVUq18yyOPJzAKVyAB1dQg1uoQwMYDOAZXuHNEc6L8+58LFpzTjZzDH/gfP4Az0uNaQ==</latexit>

R3
<latexit sha1_base64="X/JBgpD1Ix8dlJhWfh+ozmAoZ+k=">AAAB6nicbVDLTgJBEOzFF+IL9ehlItF4IruYoEcSLx7xwSOBDZkdemHC7OxmZtaEED7BiweN8eoXefNvHGAPClbSSaWqO91dQSK4Nq777eTW1jc2t/LbhZ3dvf2D4uFRU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWjm5nfekKleSwfzThBP6IDyUPOqLHSw33vslcsuWV3DrJKvIyUIEO9V/zq9mOWRigNE1Trjucmxp9QZTgTOC10U40JZSM6wI6lkkao/cn81Ck5s0qfhLGyJQ2Zq78nJjTSehwFtjOiZqiXvZn4n9dJTXjtT7hMUoOSLRaFqSAmJrO/SZ8rZEaMLaFMcXsrYUOqKDM2nYINwVt+eZU0K2WvWq7eVUq18yyOPJzAKVyAB1dQg1uoQwMYDOAZXuHNEc6L8+58LFpzTjZzDH/gfP4Az0uNaQ==</latexit>

R3
<latexit sha1_base64="hB2JvgzWw/r+mvzDTXrw07BBdq0=">AAAB6nicbVDLTgJBEOzFF+IL9ehlItF4IrvEoEcSLx7xwSOBDZkdemHC7OxmZtaEED7BiweN8eoXefNvHGAPClbSSaWqO91dQSK4Nq777eTW1jc2t/LbhZ3dvf2D4uFRU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWjm5nfekKleSwfzThBP6IDyUPOqLHSw33vslcsuWV3DrJKvIyUIEO9V/zq9mOWRigNE1Trjucmxp9QZTgTOC10U40JZSM6wI6lkkao/cn81Ck5s0qfhLGyJQ2Zq78nJjTSehwFtjOiZqiXvZn4n9dJTXjtT7hMUoOSLRaFqSAmJrO/SZ8rZEaMLaFMcXsrYUOqKDM2nYINwVt+eZU0K2WvWq7eVUq18yyOPJzAKVyAB1dQg1uoQwMYDOAZXuHNEc6L8+58LFpzTjZzDH/gfP4A0M+Nag==</latexit>

R4
<latexit sha1_base64="hB2JvgzWw/r+mvzDTXrw07BBdq0=">AAAB6nicbVDLTgJBEOzFF+IL9ehlItF4IrvEoEcSLx7xwSOBDZkdemHC7OxmZtaEED7BiweN8eoXefNvHGAPClbSSaWqO91dQSK4Nq777eTW1jc2t/LbhZ3dvf2D4uFRU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWjm5nfekKleSwfzThBP6IDyUPOqLHSw33vslcsuWV3DrJKvIyUIEO9V/zq9mOWRigNE1Trjucmxp9QZTgTOC10U40JZSM6wI6lkkao/cn81Ck5s0qfhLGyJQ2Zq78nJjTSehwFtjOiZqiXvZn4n9dJTXjtT7hMUoOSLRaFqSAmJrO/SZ8rZEaMLaFMcXsrYUOqKDM2nYINwVt+eZU0K2WvWq7eVUq18yyOPJzAKVyAB1dQg1uoQwMYDOAZXuHNEc6L8+58LFpzTjZzDH/gfP4A0M+Nag==</latexit>

R4

Energy and performance affinity models

<latexit sha1_base64="O0MeMF+k59FuuKYCo/BNNoubQxM=">AAAB6HicbVA9SwNBEJ3zM8avqKXNYlCswl2KaBmwsUzAfEByhL3NXLJmb+/Y3RPCkV9gY6GIrT/Jzn/jJrlCEx8MPN6bYWZekAiujet+OxubW9s7u4W94v7B4dFx6eS0reNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip2RmUym7FXYCsEy8nZcjRGJS++sOYpRFKwwTVuue5ifEzqgxnAmfFfqoxoWxCR9izVNIItZ8tDp2RS6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasJbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbIo2BG/15XXSrla8WqXWrJbrV3kcBTiHC7gGD26gDvfQgBYwQHiGV3hzHp0X5935WLZuOPnMGfyB8/kDrruMyA==</latexit>

W
<latexit sha1_base64="O0MeMF+k59FuuKYCo/BNNoubQxM=">AAAB6HicbVA9SwNBEJ3zM8avqKXNYlCswl2KaBmwsUzAfEByhL3NXLJmb+/Y3RPCkV9gY6GIrT/Jzn/jJrlCEx8MPN6bYWZekAiujet+OxubW9s7u4W94v7B4dFx6eS0reNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip2RmUym7FXYCsEy8nZcjRGJS++sOYpRFKwwTVuue5ifEzqgxnAmfFfqoxoWxCR9izVNIItZ8tDp2RS6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasJbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbIo2BG/15XXSrla8WqXWrJbrV3kcBTiHC7gGD26gDvfQgBYwQHiGV3hzHp0X5935WLZuOPnMGfyB8/kDrruMyA==</latexit>

W (Wh/req)
<latexit sha1_base64="dB5PYth4dvVXA/WtpJhfwtwWPp4=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPiKezmED0GRPCYgHlAsoTZSW8yZnZ2mZkVQsgXePGgiFc/yZt/4yTZgyYWNBRV3XR3BYng2rjut5Pb2Nza3snvFvb2Dw6PiscnLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb+d++wmV5rF8MJME/YgOJQ85o8ZKjbt+seSW3QXIOvEyUoIM9X7xqzeIWRqhNExQrbuemxh/SpXhTOCs0Es1JpSN6RC7lkoaofani0Nn5MIqAxLGypY0ZKH+npjSSOtJFNjOiJqRXvXm4n9eNzXhjT/lMkkNSrZcFKaCmJjMvyYDrpAZMbGEMsXtrYSNqKLM2GwKNgRv9eV10qqUvWq52qiUapdZHHk4g3O4Ag+uoQb3UIcmMEB4hld4cx6dF+fd+Vi25pxs5hT+wPn8AZNzjLY=</latexit>

E
<latexit sha1_base64="dB5PYth4dvVXA/WtpJhfwtwWPp4=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPiKezmED0GRPCYgHlAsoTZSW8yZnZ2mZkVQsgXePGgiFc/yZt/4yTZgyYWNBRV3XR3BYng2rjut5Pb2Nza3snvFvb2Dw6PiscnLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb+d++wmV5rF8MJME/YgOJQ85o8ZKjbt+seSW3QXIOvEyUoIM9X7xqzeIWRqhNExQrbuemxh/SpXhTOCs0Es1JpSN6RC7lkoaofani0Nn5MIqAxLGypY0ZKH+npjSSOtJFNjOiJqRXvXm4n9eNzXhjT/lMkkNSrZcFKaCmJjMvyYDrpAZMbGEMsXtrYSNqKLM2GwKNgRv9eV10qqUvWq52qiUapdZHHk4g3O4Ag+uoQb3UIcmMEB4hld4cx6dF+fd+Vi25pxs5hT+wPn8AZNzjLY=</latexit>

E (req/core/s)

CP solver

Constraints

Objective function

Assignments
<latexit sha1_base64="HxmLd910uvgNTQ9UGtJlA4XsPEM=">AAAB6HicbVA9TwJBEJ3DL8Qv1NJmI9FYkTsKtCTRwhIS+UjgQvaWOVjZ27vs7pkQwi+wsdAYW3+Snf/GBa5Q8CWTvLw3k5l5QSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj27nffkKleSwfzCRBP6JDyUPOqLFS465fLLlldwGyTryMlCBDvV/86g1ilkYoDRNU667nJsafUmU4Ezgr9FKNCWVjOsSupZJGqP3p4tAZubDKgISxsiUNWai/J6Y00noSBbYzomakV725+J/XTU1440+5TFKDki0XhakgJibzr8mAK2RGTCyhTHF7K2EjqigzNpuCDcFbfXmdtCplr1quNiql2mUWRx7O4ByuwINrqME91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AJHvjLU=</latexit>

D
<latexit sha1_base64="HxmLd910uvgNTQ9UGtJlA4XsPEM=">AAAB6HicbVA9TwJBEJ3DL8Qv1NJmI9FYkTsKtCTRwhIS+UjgQvaWOVjZ27vs7pkQwi+wsdAYW3+Snf/GBa5Q8CWTvLw3k5l5QSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj27nffkKleSwfzCRBP6JDyUPOqLFS465fLLlldwGyTryMlCBDvV/86g1ilkYoDRNU667nJsafUmU4Ezgr9FKNCWVjOsSupZJGqP3p4tAZubDKgISxsiUNWai/J6Y00noSBbYzomakV725+J/XTU1440+5TFKDki0XhakgJibzr8mAK2RGTCyhTHF7K2EjqigzNpuCDcFbfXmdtCplr1quNiql2mUWRx7O4ByuwINrqME91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AJHvjLU=</latexit>

D and
<latexit sha1_base64="vZRLPRzRGWQA3d1RUBo1JV6PNnc=">AAAB6HicbVA9TwJBEJ3DL8Qv1NJmI9FYkTsKtMTYWEIiHwlcyN4yByt7e5fdPRNC+AU2Fhpj60+y89+4wBUKvmSSl/dmMjMvSATXxnW/ndzG5tb2Tn63sLd/cHhUPD5p6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/fbT6g0j+WDmSToR3QoecgZNVZq3PaLJbfsLkDWiZeREmSo94tfvUHM0gilYYJq3fXcxPhTqgxnAmeFXqoxoWxMh9i1VNIItT9dHDojF1YZkDBWtqQhC/X3xJRGWk+iwHZG1Iz0qjcX//O6qQlv/CmXSWpQsuWiMBXExGT+NRlwhcyIiSWUKW5vJWxEFWXGZlOwIXirL6+TVqXsVcvVRqVUu8ziyMMZnMMVeHANNbiHOjSBAcIzvMKb8+i8OO/Ox7I152Qzp/AHzucPjWOMsg==</latexit>

A
<latexit sha1_base64="vZRLPRzRGWQA3d1RUBo1JV6PNnc=">AAAB6HicbVA9TwJBEJ3DL8Qv1NJmI9FYkTsKtMTYWEIiHwlcyN4yByt7e5fdPRNC+AU2Fhpj60+y89+4wBUKvmSSl/dmMjMvSATXxnW/ndzG5tb2Tn63sLd/cHhUPD5p6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/fbT6g0j+WDmSToR3QoecgZNVZq3PaLJbfsLkDWiZeREmSo94tfvUHM0gilYYJq3fXcxPhTqgxnAmeFXqoxoWxMh9i1VNIItT9dHDojF1YZkDBWtqQhC/X3xJRGWk+iwHZG1Iz0qjcX//O6qQlv/CmXSWpQsuWiMBXExGT+NRlwhcyIiSWUKW5vJWxEFWXGZlOwIXirL6+TVqXsVcvVRqVUu8ziyMMZnMMVeHANNbiHOjSBAcIzvMKb8+i8OO/Ox7I152Qzp/AHzucPjWOMsg==</latexit>

A

x86 CPU ARM CPU

Our inputs

Our outputs

mailto:etienne.riviere@uclouvain.be

WoSC 10 — Arys, Carlier, and Rivière — etienne.riviere@uclouvain.be

Constraint Problem
• The scheduling problem is defined as an optimization under constraints

• Constraints:

• Each function on one server:

• Servers capacity:

• Assignment of cores to functions

•
• Objective functions that we need to minimize

• Energy-aware policy

• Core-aware policy minimizes occupied cores:

• Expressed using MiniZinc, solved using Gecode solver

m

∑
i=1

(Dij) = 1 ∀j ∈ [1,n]

Ci ≥
n

∑
j=1

(Dij ⋅ Ai) ∀i ∈ [1,m]

Aj = ⌈
m

∑
i=1

(Dij ⋅
Rj

Eij
)⌉ ∀j ∈ [1,n]

OE :
m

∑
i=1

(
n

∑
j=1

(Dij ⋅ Wij ⋅ Rj))
OC :

m

∑
i=1

(
n

∑
j=1

(Dij ⋅ Aj))

13

CP Model

Scheduling
Using constraint programming

Variables : characterise the problem

Constraints : ensure val id solutions

Objective : describe the objective function

to be minimised

Components

ConstraintsVariables

Objective

16/23

mailto:etienne.riviere@uclouvain.be

WoSC 10 — Arys, Carlier, and Rivière — etienne.riviere@uclouvain.be

Evaluation

• Can the energy-aware policy outperform a
random placement or the energy-unaware,
core-aware policy?

• Four steps
1. Validation of PowerAPI on ARM
2. Definition of a serverless workload
3. Results of performance and energy affinity models
4. Impact of scheduling policies on global consumption

14

mailto:etienne.riviere@uclouvain.be

WoSC 10 — Arys, Carlier, and Rivière — etienne.riviere@uclouvain.be

Validation of Ampere
PowerAPI integration

• PowerAPI monitors the difference between CPU
global estimation and results from the models
• Self-calibration if over a threshold

• Validation using stress-ng with 0% to 100% load
(all 128 cores saturated), increment every 3 minutes

15

� �	� 	��
	� ���� ��	� �	�� �
	�

�������

�

	�

���

�	�

���

�	�

��
��

���
�
�

����������������
����������������

Better accuracy
with higher
load, estimation
matches TDP

Aligned with
announced idle

consumption of the
CPU (50W)

mailto:etienne.riviere@uclouvain.be

WoSC 10 — Arys, Carlier, and Rivière — etienne.riviere@uclouvain.be

Workload: 22 serverless functions
16

Energy-Aware Scheduling of a Serverless Workload in an ISA-Heterogeneous Cluster WOSC ’24, December 2–6, 2024, Hong Kong, Hong Kong

Function Runtimes Description

Category 1: Crypto
1–2 El Passo C++, WebAssembly Compute anonymous credentials for single-sign-on.
3–5 JWT Python, Node.js, Java Create and sign JWT token.

Category 2: Media
6–8 Thumbnail Python, Node.js, Java Resize a base64-encoded image.
9–10 Video to GIF Python, Node.js Transcode a video to a GIF using !mpeg.
11 Img Recognition Python Object recognition in an image using the AlexNet model of Torchvision.

Category 3: Scienti!c
12 Matrix NumPy Python Compute dot product of two random 30x30 matrices with NumPy.

13–15 Matrix native Python, Node.js, Java Compute dot product of two random 30x30 matrices using native code.
16 PageRank Python Compute pagerank on a 500-vertex, 250-edge graph using igraph.

Category 4: Web
17–19 HTML Python, Node.js, Java Fill HTML template using jinja2 (Python), Mustache (Node.JS), or FreeMaker (Java).
20–22 Zip Python, Node.js, Java Compress 3 "les into a single zip archive.

Table 1: Workload of 22 serverless functions (10 functions, each for 1 to 3 di"erent languages and runtimes).

�� �

 �
 �

�

	

��

�!
%�
���
 �
#�
'�
�!
 $
&�

��
���

�� �� �#��

�� �

 �
 �

�#'"%!��!�� �%��

�� �

 �
 �

�������!�� �%��

�� �

 �
 �

���� %������!�� �%��

�� �

 �
 �

�����!�� �%��

Figure 5: Total energy consumed by the cluster for a balanced workload (General) and workloads dominated by an application
class. Policies: Round-Robin (RR), Intel-First (IF), Ampere-First (AF), Cores-aware (CA), and Energy-aware (EA).

improvement in the General, Media-dominated, and particularly
Crypto-dominated workloads, with gains ranging from 5.3% to
15.2% and improving upon the CA policy. For the Scienti"c- and
Web-dominated workloads, however, there is no signi"cative gain
from reducing expected energy consumption compared to reducing
the number of cores used. For the Scienti"c-dominated workload,
EA uses more ARM cores than CA (128/158 total vs. 115/155). EA
and CA use the 128 ARM cores for the Web-dominated workload
and yield the same assignment. In summary, we observe that EA is
better for some workloads and never worse than CA.

Summary. Our evaluation shows that energy-e#cient scheduling,
by leveraging heterogeneity, may positively impact the electrical
consumption of highly consolidated serverless infrastructures. The
most signi"cant gains are with the crypto-dominated workload,
which is very CPU-intensive and includes functions that bene"t
more from x86. In practice, we also observe that ARM’s advantage
in performance and energy e#ciency is real for individual functions,
but high colocation leads to performance losses that reduce the gap
with x86, which is less subject to such colocation e!ects. Measuring
the micro-architectural reasons for this di!erence is an interesting
path for future work.

6 Related work
Chen et al. [5] study the relative performance of serverless functions
on x86 (Intel) and ARM64 (Graviton2) running on AWS Lambda.
Their study highlights that functions requiring more system calls
tend to perform better on x86, while ARM performance tends to

be more stable. Their evaluation targets a closed cloud system, so
they could not relate this to energy.

The use of heterogeneous hardware to support serverless work-
loads has been explored by Molecule [10], a serverless platform
supporting the execution of functions over various accelerators
(e.g., GPUs and FPGA), and Icebreaker [22], which leverages a het-
erogeneous $eet of servers (i.e., inexpensive servers together with
expensive ones using the same ISA) to reduce the bootstrap time
of functions. Molecule and Icebreaker aim, however, to maximize
function execution throughput, not reduce energy consumption.

EcoFaaS [25] is an energy-aware serverless execution framework
that uses a model of the execution time vs. functions’ input charac-
teristics. Thismodel assigns optimal core frequency to functions and
reduces energy consumption. While we did not consider frequency
throttling in this paper, this approach would complement ours. Eco-
FaaS does not target environments formed of ISA-heterogeneous
nodes.

HEATS [21] is a serverless scheduler that allows users to ex-
press a tradeo! between energy and performance and schedule
functions to the best suitable and su#cient node. Similarly to our
work, HEATS uses a pro"ling phase, but, in contrast to it, it only
considers energy consumption at the PDU level, i.e., for an entire
server.

EcoLife [16] and Casa [20] are two serverless schedulers whose
goal is to minimize the carbon footprint of functions’ execution.

Function taken or
adapted from SeBS Functions coded

for or compiled to
different runtimes

Cryptographic,
server-side operations

22 serverless functions

5 Categories

Web

Scientif ic

Media

Cryptography

HTML template f i l l ing
and f i le compression

Computation on
matrices and graphs

Transformation and
analysis of images
and videos

Token authentication
and anonymous
credentials

General
Covers all functions
equally

4 Programming languages

Python

Node.js Java

WebAssembly

C++

4 runtime environments

Interpreted JVM

Native

8/23

22 serverless functions

5 Categories

Web

Scientif ic

Media

Cryptography

HTML template f i l l ing
and f i le compression

Computation on
matrices and graphs

Transformation and
analysis of images
and videos

Token authentication
and anonymous
credentials

General
Covers all functions
equally

4 Programming languages

Python

Node.js Java

WebAssembly

C++

4 runtime environments

Interpreted JVM

Native

8/23

mailto:etienne.riviere@uclouvain.be

WoSC 10 — Arys, Carlier, and Rivière — etienne.riviere@uclouvain.be

Performance and energy
(normalized to ARM results)

17

 � �
 � � � � �
	

�
�

�
�
�
�
� �	 �
 ��
	�	

	��

�	

�"
�%

�*
�$

�%
�#

%!
�"

��
�

%�
' #

���
�)

��
&�

�
��

���
)��

 � �
 � � � � �
	

�
�

�
�
�
�
� �	 �
 ��
�("�' #"&

	

�

�

��
%�#

%!
�"

��
�

%�
' #

���
�)

��
&�

�#
%�

�&
� ���

)��

WOSC ’24, December 2–6, 2024, Hong Kong, Hong Kong Simon Arys, Romain Carlier, and Etienne Rivière

� �	� 	��
	� ���� ��	� �	�� �
	�

�������

�

	�

���

�	�

���

�	�

��
��

���
�
�

����������������
����������������

Figure 3: Process-level power estimation on the ARM server.

Function Runtimes Description

Category 1: Crypto

1–2 El Passo C++,
WebAssembly

Compute anonymous credentials for
single-sign-on [28].

3–5 JWT Python,
Node.js, Java Create and sign JWT token.

Category 2: Media

6–8 Thumbnail Python,
Node.js, Java Resize a base64-encoded image.

9–10 Video to GIF Python,
Node.js Transcode a video to a GIF using !mpeg.

11 Img Rec. Python Object recognition in an image using the AlexNet
model of Torchvision.

Category 3: Scienti!c

12 Matrix NumPy Python Compute dot product of two random 30x30 matrices
with NumPy.

13–15 Matrix native Python,
Node.js, Java

Compute dot product of two random 30x30 matrices
using native code.

16 PageRank Python Compute pagerank on a 500-vertex, 250-edge graph
using igraph.

Category 4: Web

17–19 HTML Python,
Node.js, Java

Fill HTML template using jinja2 (Python), Mustache
(Node.JS), or FreeMaker (Java).

20–22 Zip Python,
Node.js, Java Compress 3 "les into a single zip archive.

Table 1: Workload of 22 serverless functions (10 functions,
each for 1 to 3 di"erent languages and runtimes).

only 10% initial load (→12.8 cores), the consumption is around 50W.
The estimation error spikes after a change in load but reduces over
time. This results from the self-calibration of the PowerAPI models,
which adjust the model over time to correct prediction errors. We
account for these two observations in the pro"ling phase by run-
ning and monitoring functions under high load and for a su#cient
duration, i.e., three minutes of observations following a one-minute
warm-up.

5.2 Energy and Performance A#nity Models
We now evaluate the o$ine a#nity modeling process. We use the
22-function workload detailed in Table 1. This represents the vari-
ety of functions supported by serverless platforms. Seven triplets of
functions (all but #11, #12, and #16) are di!erent implementations
of the same task using three di!erent programming languages and
runtimes. The numbering of these functions follows the order of

 � �
 � � � � �
	

�
�

�
�
�
�
� �	 �
 ��
	�	

	��

�	

�"
�%

�*
�$

�%
�#

%!
�"

��
�

%�
' #

���
�)

��
&�

�
��

���
)��

 � �
 � � � � �
	

�
�

�
�
�
�
� �	 �
 ��
�("�' #"&

	

�

�

��
%�#

%!
�"

��
�

%�
' #

���
�)

��
&�

�#
%�

�&
� ���

)��

Figure 4: Relative energy (top) and performance (bottom)
a#nity pro!les of the 22 functions on x86 and ARM.

options in the “Runtimes” column of Table 1. For instance, func-
tions #3, #4, and #5 implement the generation of JWT tokens using
Python, Node.JS, or Java, respectively. Eight functions (#6, #7, #9,
#11, #16, #17, #18, and #20) are from the SeBS benchmark suite [8],
while we implemented the others to improve diversity. Functions
#1 and #2 are representative of modern, computationally intensive
cryptography operations used in privacy-preserving systems and
web3 [28]. They use either native (C++) or WebAssembly code. We
group functions into four categories depending on their application
domain.

Figure 4 presents the energy and performance pro"les of the 22
functions obtained from o$ine pro"ling (§3). We choose to present
relative values comparing the ARM and x86 estimations. A ratio of
1 means that both servers have comparable performance or energy
e#ciency. A ratio >1 means x86 is better, and a ratio < 1 means
ARM is.

21/22 functions have either better performance or better energy
e#ciency on ARM. Only one function (#11, image recognition) has
better results for both metrics on x86. Five functions (#1, #2, #7,
#11 and #18) execute more instances per core per second on x86,
but their energy e#ciency remains lower. Some functions (e.g., #11,
#12, and #18) show high metrics variability, meaning that their per-
formance and energy e#ciency are heavily in%uenced by colocated
functions.2 Overall, while there is a general advantage in perfor-
mance and energy e#ciency for ARM, the extent of this advantage
varies signi"cantly, from 21% (#18) to 280% (#4). Intuitively, func-
tions that bene"t the most from one type of machine should have
a higher priority to be scheduled on that machine than functions
that perform more similarly on the two heterogeneous platforms.

5.3 Scheduling
We evaluate the ability of our scheduler to improve the heteroge-
neous cluster’s energy consumption, as measured by the PDU level
2Note that we leave for future work the analysis of resource sharing at the CPU and
memory level to understand the reasons for these variations. For the present study,
high-level “opaque box” models are su#cient.

mailto:etienne.riviere@uclouvain.be

WoSC 10 — Arys, Carlier, and Rivière — etienne.riviere@uclouvain.be

Performance and energy
(normalized to ARM results)

17

 � �
 � � � � �
	

�
�

�
�
�
�
� �	 �
 ��
	�	

	��

�	

�"
�%

�*
�$

�%
�#

%!
�"

��
�

%�
' #

���
�)

��
&�

�
��

���
)��

 � �
 � � � � �
	

�
�

�
�
�
�
� �	 �
 ��
�("�' #"&

	

�

�

��
%�#

%!
�"

��
�

%�
' #

���
�)

��
&�

�#
%�

�&
� ���

)��

WOSC ’24, December 2–6, 2024, Hong Kong, Hong Kong Simon Arys, Romain Carlier, and Etienne Rivière

� �	� 	��
	� ���� ��	� �	�� �
	�

�������

�

	�

���

�	�

���

�	�

��
��

���
�
�

����������������
����������������

Figure 3: Process-level power estimation on the ARM server.

Function Runtimes Description

Category 1: Crypto

1–2 El Passo C++,
WebAssembly

Compute anonymous credentials for
single-sign-on [28].

3–5 JWT Python,
Node.js, Java Create and sign JWT token.

Category 2: Media

6–8 Thumbnail Python,
Node.js, Java Resize a base64-encoded image.

9–10 Video to GIF Python,
Node.js Transcode a video to a GIF using !mpeg.

11 Img Rec. Python Object recognition in an image using the AlexNet
model of Torchvision.

Category 3: Scienti!c

12 Matrix NumPy Python Compute dot product of two random 30x30 matrices
with NumPy.

13–15 Matrix native Python,
Node.js, Java

Compute dot product of two random 30x30 matrices
using native code.

16 PageRank Python Compute pagerank on a 500-vertex, 250-edge graph
using igraph.

Category 4: Web

17–19 HTML Python,
Node.js, Java

Fill HTML template using jinja2 (Python), Mustache
(Node.JS), or FreeMaker (Java).

20–22 Zip Python,
Node.js, Java Compress 3 "les into a single zip archive.

Table 1: Workload of 22 serverless functions (10 functions,
each for 1 to 3 di"erent languages and runtimes).

only 10% initial load (→12.8 cores), the consumption is around 50W.
The estimation error spikes after a change in load but reduces over
time. This results from the self-calibration of the PowerAPI models,
which adjust the model over time to correct prediction errors. We
account for these two observations in the pro"ling phase by run-
ning and monitoring functions under high load and for a su#cient
duration, i.e., three minutes of observations following a one-minute
warm-up.

5.2 Energy and Performance A#nity Models
We now evaluate the o$ine a#nity modeling process. We use the
22-function workload detailed in Table 1. This represents the vari-
ety of functions supported by serverless platforms. Seven triplets of
functions (all but #11, #12, and #16) are di!erent implementations
of the same task using three di!erent programming languages and
runtimes. The numbering of these functions follows the order of

 � �
 � � � � �
	

�
�

�
�
�
�
� �	 �
 ��
	�	

	��

�	

�"
�%

�*
�$

�%
�#

%!
�"

��
�

%�
' #

���
�)

��
&�

�
��

���
)��

 � �
 � � � � �
	

�
�

�
�
�
�
� �	 �
 ��
�("�' #"&

	

�

�

��
%�#

%!
�"

��
�

%�
' #

���
�)

��
&�

�#
%�

�&
� ���

)��

Figure 4: Relative energy (top) and performance (bottom)
a#nity pro!les of the 22 functions on x86 and ARM.

options in the “Runtimes” column of Table 1. For instance, func-
tions #3, #4, and #5 implement the generation of JWT tokens using
Python, Node.JS, or Java, respectively. Eight functions (#6, #7, #9,
#11, #16, #17, #18, and #20) are from the SeBS benchmark suite [8],
while we implemented the others to improve diversity. Functions
#1 and #2 are representative of modern, computationally intensive
cryptography operations used in privacy-preserving systems and
web3 [28]. They use either native (C++) or WebAssembly code. We
group functions into four categories depending on their application
domain.

Figure 4 presents the energy and performance pro"les of the 22
functions obtained from o$ine pro"ling (§3). We choose to present
relative values comparing the ARM and x86 estimations. A ratio of
1 means that both servers have comparable performance or energy
e#ciency. A ratio >1 means x86 is better, and a ratio < 1 means
ARM is.

21/22 functions have either better performance or better energy
e#ciency on ARM. Only one function (#11, image recognition) has
better results for both metrics on x86. Five functions (#1, #2, #7,
#11 and #18) execute more instances per core per second on x86,
but their energy e#ciency remains lower. Some functions (e.g., #11,
#12, and #18) show high metrics variability, meaning that their per-
formance and energy e#ciency are heavily in%uenced by colocated
functions.2 Overall, while there is a general advantage in perfor-
mance and energy e#ciency for ARM, the extent of this advantage
varies signi"cantly, from 21% (#18) to 280% (#4). Intuitively, func-
tions that bene"t the most from one type of machine should have
a higher priority to be scheduled on that machine than functions
that perform more similarly on the two heterogeneous platforms.

5.3 Scheduling
We evaluate the ability of our scheduler to improve the heteroge-
neous cluster’s energy consumption, as measured by the PDU level
2Note that we leave for future work the analysis of resource sharing at the CPU and
memory level to understand the reasons for these variations. For the present study,
high-level “opaque box” models are su#cient.

21/22 functions have better performance or better energy efficiency on ARM

mailto:etienne.riviere@uclouvain.be

WoSC 10 — Arys, Carlier, and Rivière — etienne.riviere@uclouvain.be

Performance and energy
(normalized to ARM results)

17

 � �
 � � � � �
	

�
�

�
�
�
�
� �	 �
 ��
	�	

	��

�	

�"
�%

�*
�$

�%
�#

%!
�"

��
�

%�
' #

���
�)

��
&�

�
��

���
)��

 � �
 � � � � �
	

�
�

�
�
�
�
� �	 �
 ��
�("�' #"&

	

�

�

��
%�#

%!
�"

��
�

%�
' #

���
�)

��
&�

�#
%�

�&
� ���

)��

WOSC ’24, December 2–6, 2024, Hong Kong, Hong Kong Simon Arys, Romain Carlier, and Etienne Rivière

� �	� 	��
	� ���� ��	� �	�� �
	�

�������

�

	�

���

�	�

���

�	�

��
��

���
�
�

����������������
����������������

Figure 3: Process-level power estimation on the ARM server.

Function Runtimes Description

Category 1: Crypto

1–2 El Passo C++,
WebAssembly

Compute anonymous credentials for
single-sign-on [28].

3–5 JWT Python,
Node.js, Java Create and sign JWT token.

Category 2: Media

6–8 Thumbnail Python,
Node.js, Java Resize a base64-encoded image.

9–10 Video to GIF Python,
Node.js Transcode a video to a GIF using !mpeg.

11 Img Rec. Python Object recognition in an image using the AlexNet
model of Torchvision.

Category 3: Scienti!c

12 Matrix NumPy Python Compute dot product of two random 30x30 matrices
with NumPy.

13–15 Matrix native Python,
Node.js, Java

Compute dot product of two random 30x30 matrices
using native code.

16 PageRank Python Compute pagerank on a 500-vertex, 250-edge graph
using igraph.

Category 4: Web

17–19 HTML Python,
Node.js, Java

Fill HTML template using jinja2 (Python), Mustache
(Node.JS), or FreeMaker (Java).

20–22 Zip Python,
Node.js, Java Compress 3 "les into a single zip archive.

Table 1: Workload of 22 serverless functions (10 functions,
each for 1 to 3 di"erent languages and runtimes).

only 10% initial load (→12.8 cores), the consumption is around 50W.
The estimation error spikes after a change in load but reduces over
time. This results from the self-calibration of the PowerAPI models,
which adjust the model over time to correct prediction errors. We
account for these two observations in the pro"ling phase by run-
ning and monitoring functions under high load and for a su#cient
duration, i.e., three minutes of observations following a one-minute
warm-up.

5.2 Energy and Performance A#nity Models
We now evaluate the o$ine a#nity modeling process. We use the
22-function workload detailed in Table 1. This represents the vari-
ety of functions supported by serverless platforms. Seven triplets of
functions (all but #11, #12, and #16) are di!erent implementations
of the same task using three di!erent programming languages and
runtimes. The numbering of these functions follows the order of

 � �
 � � � � �
	

�
�

�
�
�
�
� �	 �
 ��
	�	

	��

�	

�"
�%

�*
�$

�%
�#

%!
�"

��
�

%�
' #

���
�)

��
&�

�
��

���
)��

 � �
 � � � � �
	

�
�

�
�
�
�
� �	 �
 ��
�("�' #"&

	

�

�

��
%�#

%!
�"

��
�

%�
' #

���
�)

��
&�

�#
%�

�&
� ���

)��

Figure 4: Relative energy (top) and performance (bottom)
a#nity pro!les of the 22 functions on x86 and ARM.

options in the “Runtimes” column of Table 1. For instance, func-
tions #3, #4, and #5 implement the generation of JWT tokens using
Python, Node.JS, or Java, respectively. Eight functions (#6, #7, #9,
#11, #16, #17, #18, and #20) are from the SeBS benchmark suite [8],
while we implemented the others to improve diversity. Functions
#1 and #2 are representative of modern, computationally intensive
cryptography operations used in privacy-preserving systems and
web3 [28]. They use either native (C++) or WebAssembly code. We
group functions into four categories depending on their application
domain.

Figure 4 presents the energy and performance pro"les of the 22
functions obtained from o$ine pro"ling (§3). We choose to present
relative values comparing the ARM and x86 estimations. A ratio of
1 means that both servers have comparable performance or energy
e#ciency. A ratio >1 means x86 is better, and a ratio < 1 means
ARM is.

21/22 functions have either better performance or better energy
e#ciency on ARM. Only one function (#11, image recognition) has
better results for both metrics on x86. Five functions (#1, #2, #7,
#11 and #18) execute more instances per core per second on x86,
but their energy e#ciency remains lower. Some functions (e.g., #11,
#12, and #18) show high metrics variability, meaning that their per-
formance and energy e#ciency are heavily in%uenced by colocated
functions.2 Overall, while there is a general advantage in perfor-
mance and energy e#ciency for ARM, the extent of this advantage
varies signi"cantly, from 21% (#18) to 280% (#4). Intuitively, func-
tions that bene"t the most from one type of machine should have
a higher priority to be scheduled on that machine than functions
that perform more similarly on the two heterogeneous platforms.

5.3 Scheduling
We evaluate the ability of our scheduler to improve the heteroge-
neous cluster’s energy consumption, as measured by the PDU level
2Note that we leave for future work the analysis of resource sharing at the CPU and
memory level to understand the reasons for these variations. For the present study,
high-level “opaque box” models are su#cient.

21/22 functions have better performance or better energy efficiency on ARM

x86 has better performance
for only 5 functions

mailto:etienne.riviere@uclouvain.be

WoSC 10 — Arys, Carlier, and Rivière — etienne.riviere@uclouvain.be

Performance and energy
(normalized to ARM results)

17

 � �
 � � � � �
	

�
�

�
�
�
�
� �	 �
 ��
	�	

	��

�	

�"
�%

�*
�$

�%
�#

%!
�"

��
�

%�
' #

���
�)

��
&�

�
��

���
)��

 � �
 � � � � �
	

�
�

�
�
�
�
� �	 �
 ��
�("�' #"&

	

�

�

��
%�#

%!
�"

��
�

%�
' #

���
�)

��
&�

�#
%�

�&
� ���

)��

WOSC ’24, December 2–6, 2024, Hong Kong, Hong Kong Simon Arys, Romain Carlier, and Etienne Rivière

� �	� 	��
	� ���� ��	� �	�� �
	�

�������

�

	�

���

�	�

���

�	�

��
��

���
�
�

����������������
����������������

Figure 3: Process-level power estimation on the ARM server.

Function Runtimes Description

Category 1: Crypto

1–2 El Passo C++,
WebAssembly

Compute anonymous credentials for
single-sign-on [28].

3–5 JWT Python,
Node.js, Java Create and sign JWT token.

Category 2: Media

6–8 Thumbnail Python,
Node.js, Java Resize a base64-encoded image.

9–10 Video to GIF Python,
Node.js Transcode a video to a GIF using !mpeg.

11 Img Rec. Python Object recognition in an image using the AlexNet
model of Torchvision.

Category 3: Scienti!c

12 Matrix NumPy Python Compute dot product of two random 30x30 matrices
with NumPy.

13–15 Matrix native Python,
Node.js, Java

Compute dot product of two random 30x30 matrices
using native code.

16 PageRank Python Compute pagerank on a 500-vertex, 250-edge graph
using igraph.

Category 4: Web

17–19 HTML Python,
Node.js, Java

Fill HTML template using jinja2 (Python), Mustache
(Node.JS), or FreeMaker (Java).

20–22 Zip Python,
Node.js, Java Compress 3 "les into a single zip archive.

Table 1: Workload of 22 serverless functions (10 functions,
each for 1 to 3 di"erent languages and runtimes).

only 10% initial load (→12.8 cores), the consumption is around 50W.
The estimation error spikes after a change in load but reduces over
time. This results from the self-calibration of the PowerAPI models,
which adjust the model over time to correct prediction errors. We
account for these two observations in the pro"ling phase by run-
ning and monitoring functions under high load and for a su#cient
duration, i.e., three minutes of observations following a one-minute
warm-up.

5.2 Energy and Performance A#nity Models
We now evaluate the o$ine a#nity modeling process. We use the
22-function workload detailed in Table 1. This represents the vari-
ety of functions supported by serverless platforms. Seven triplets of
functions (all but #11, #12, and #16) are di!erent implementations
of the same task using three di!erent programming languages and
runtimes. The numbering of these functions follows the order of

 � �
 � � � � �
	

�
�

�
�
�
�
� �	 �
 ��
	�	

	��

�	

�"
�%

�*
�$

�%
�#

%!
�"

��
�

%�
' #

���
�)

��
&�

�
��

���
)��

 � �
 � � � � �
	

�
�

�
�
�
�
� �	 �
 ��
�("�' #"&

	

�

�

��
%�#

%!
�"

��
�

%�
' #

���
�)

��
&�

�#
%�

�&
� ���

)��

Figure 4: Relative energy (top) and performance (bottom)
a#nity pro!les of the 22 functions on x86 and ARM.

options in the “Runtimes” column of Table 1. For instance, func-
tions #3, #4, and #5 implement the generation of JWT tokens using
Python, Node.JS, or Java, respectively. Eight functions (#6, #7, #9,
#11, #16, #17, #18, and #20) are from the SeBS benchmark suite [8],
while we implemented the others to improve diversity. Functions
#1 and #2 are representative of modern, computationally intensive
cryptography operations used in privacy-preserving systems and
web3 [28]. They use either native (C++) or WebAssembly code. We
group functions into four categories depending on their application
domain.

Figure 4 presents the energy and performance pro"les of the 22
functions obtained from o$ine pro"ling (§3). We choose to present
relative values comparing the ARM and x86 estimations. A ratio of
1 means that both servers have comparable performance or energy
e#ciency. A ratio >1 means x86 is better, and a ratio < 1 means
ARM is.

21/22 functions have either better performance or better energy
e#ciency on ARM. Only one function (#11, image recognition) has
better results for both metrics on x86. Five functions (#1, #2, #7,
#11 and #18) execute more instances per core per second on x86,
but their energy e#ciency remains lower. Some functions (e.g., #11,
#12, and #18) show high metrics variability, meaning that their per-
formance and energy e#ciency are heavily in%uenced by colocated
functions.2 Overall, while there is a general advantage in perfor-
mance and energy e#ciency for ARM, the extent of this advantage
varies signi"cantly, from 21% (#18) to 280% (#4). Intuitively, func-
tions that bene"t the most from one type of machine should have
a higher priority to be scheduled on that machine than functions
that perform more similarly on the two heterogeneous platforms.

5.3 Scheduling
We evaluate the ability of our scheduler to improve the heteroge-
neous cluster’s energy consumption, as measured by the PDU level
2Note that we leave for future work the analysis of resource sharing at the CPU and
memory level to understand the reasons for these variations. For the present study,
high-level “opaque box” models are su#cient.

21/22 functions have better performance or better energy efficiency on ARM

x86 has better performance
for only 5 functions

One function has better energy
and performance results on x86

mailto:etienne.riviere@uclouvain.be

WoSC 10 — Arys, Carlier, and Rivière — etienne.riviere@uclouvain.be

Performance and energy
(normalized to ARM results)

17

 � �
 � � � � �
	

�
�

�
�
�
�
� �	 �
 ��
	�	

	��

�	

�"
�%

�*
�$

�%
�#

%!
�"

��
�

%�
' #

���
�)

��
&�

�
��

���
)��

 � �
 � � � � �
	

�
�

�
�
�
�
� �	 �
 ��
�("�' #"&

	

�

�

��
%�#

%!
�"

��
�

%�
' #

���
�)

��
&�

�#
%�

�&
� ���

)��

WOSC ’24, December 2–6, 2024, Hong Kong, Hong Kong Simon Arys, Romain Carlier, and Etienne Rivière

� �	� 	��
	� ���� ��	� �	�� �
	�

�������

�

	�

���

�	�

���

�	�

��
��

���
�
�

����������������
����������������

Figure 3: Process-level power estimation on the ARM server.

Function Runtimes Description

Category 1: Crypto

1–2 El Passo C++,
WebAssembly

Compute anonymous credentials for
single-sign-on [28].

3–5 JWT Python,
Node.js, Java Create and sign JWT token.

Category 2: Media

6–8 Thumbnail Python,
Node.js, Java Resize a base64-encoded image.

9–10 Video to GIF Python,
Node.js Transcode a video to a GIF using !mpeg.

11 Img Rec. Python Object recognition in an image using the AlexNet
model of Torchvision.

Category 3: Scienti!c

12 Matrix NumPy Python Compute dot product of two random 30x30 matrices
with NumPy.

13–15 Matrix native Python,
Node.js, Java

Compute dot product of two random 30x30 matrices
using native code.

16 PageRank Python Compute pagerank on a 500-vertex, 250-edge graph
using igraph.

Category 4: Web

17–19 HTML Python,
Node.js, Java

Fill HTML template using jinja2 (Python), Mustache
(Node.JS), or FreeMaker (Java).

20–22 Zip Python,
Node.js, Java Compress 3 "les into a single zip archive.

Table 1: Workload of 22 serverless functions (10 functions,
each for 1 to 3 di"erent languages and runtimes).

only 10% initial load (→12.8 cores), the consumption is around 50W.
The estimation error spikes after a change in load but reduces over
time. This results from the self-calibration of the PowerAPI models,
which adjust the model over time to correct prediction errors. We
account for these two observations in the pro"ling phase by run-
ning and monitoring functions under high load and for a su#cient
duration, i.e., three minutes of observations following a one-minute
warm-up.

5.2 Energy and Performance A#nity Models
We now evaluate the o$ine a#nity modeling process. We use the
22-function workload detailed in Table 1. This represents the vari-
ety of functions supported by serverless platforms. Seven triplets of
functions (all but #11, #12, and #16) are di!erent implementations
of the same task using three di!erent programming languages and
runtimes. The numbering of these functions follows the order of

 � �
 � � � � �
	

�
�

�
�
�
�
� �	 �
 ��
	�	

	��

�	

�"
�%

�*
�$

�%
�#

%!
�"

��
�

%�
' #

���
�)

��
&�

�
��

���
)��

 � �
 � � � � �
	

�
�

�
�
�
�
� �	 �
 ��
�("�' #"&

	

�

�

��
%�#

%!
�"

��
�

%�
' #

���
�)

��
&�

�#
%�

�&
� ���

)��

Figure 4: Relative energy (top) and performance (bottom)
a#nity pro!les of the 22 functions on x86 and ARM.

options in the “Runtimes” column of Table 1. For instance, func-
tions #3, #4, and #5 implement the generation of JWT tokens using
Python, Node.JS, or Java, respectively. Eight functions (#6, #7, #9,
#11, #16, #17, #18, and #20) are from the SeBS benchmark suite [8],
while we implemented the others to improve diversity. Functions
#1 and #2 are representative of modern, computationally intensive
cryptography operations used in privacy-preserving systems and
web3 [28]. They use either native (C++) or WebAssembly code. We
group functions into four categories depending on their application
domain.

Figure 4 presents the energy and performance pro"les of the 22
functions obtained from o$ine pro"ling (§3). We choose to present
relative values comparing the ARM and x86 estimations. A ratio of
1 means that both servers have comparable performance or energy
e#ciency. A ratio >1 means x86 is better, and a ratio < 1 means
ARM is.

21/22 functions have either better performance or better energy
e#ciency on ARM. Only one function (#11, image recognition) has
better results for both metrics on x86. Five functions (#1, #2, #7,
#11 and #18) execute more instances per core per second on x86,
but their energy e#ciency remains lower. Some functions (e.g., #11,
#12, and #18) show high metrics variability, meaning that their per-
formance and energy e#ciency are heavily in%uenced by colocated
functions.2 Overall, while there is a general advantage in perfor-
mance and energy e#ciency for ARM, the extent of this advantage
varies signi"cantly, from 21% (#18) to 280% (#4). Intuitively, func-
tions that bene"t the most from one type of machine should have
a higher priority to be scheduled on that machine than functions
that perform more similarly on the two heterogeneous platforms.

5.3 Scheduling
We evaluate the ability of our scheduler to improve the heteroge-
neous cluster’s energy consumption, as measured by the PDU level
2Note that we leave for future work the analysis of resource sharing at the CPU and
memory level to understand the reasons for these variations. For the present study,
high-level “opaque box” models are su#cient.

21/22 functions have better performance or better energy efficiency on ARM

x86 has better performance
for only 5 functions

Several functions show important
fluctuations due to colocation

One function has better energy
and performance results on x86

mailto:etienne.riviere@uclouvain.be

WoSC 10 — Arys, Carlier, and Rivière — etienne.riviere@uclouvain.be

Scheduling: results
• Complete energy consumption (server level)

• Measured at the power distribution unit

• CPU is one element of a whole!

• Five different workloads
• General: 25% load (cores) per category; x-dominated:

80% of the load for category x, 20% for the rest

• Within each category, balance the expected required
number of cores per function

• All runs successfully match the required number
of calls per second to each function

18

�� �

 �
 �

�

	

��

�!
%�
���
 �
#�
'�
�!
 $
&�

��
���

�� �� �#��

�� �

 �
 �

�#'"%!��!�� �%��

�� �

 �
 �

�������!�� �%��

�� �

 �
 �

���� %������!�� �%��

�� �

 �
 �

�����!�� �%��

Policy Detail

RR Round-Robin Alternate placement on
the two servers

IF Intel (x86) First First fill the x86 server,
then use ARM

AF ARM First First fill the ARM server,
then use x86

CA Core-Aware Baseline optimization,
minimizes #cores

EA Energy-Aware Minimize expected
energy consumption

mailto:etienne.riviere@uclouvain.be

WoSC 10 — Arys, Carlier, and Rivière — etienne.riviere@uclouvain.be

Scheduling: results
• Complete energy consumption (server level)

• Measured at the power distribution unit

• CPU is one element of a whole!

• Five different workloads
• General: 25% load (cores) per category; x-dominated:

80% of the load for category x, 20% for the rest

• Within each category, balance the expected required
number of cores per function

• All runs successfully match the required number
of calls per second to each function

18

�� �

 �
 �

�

	

��

�!
%�
���
 �
#�
'�
�!
 $
&�

��
���

�� �� �#��

�� �

 �
 �

�#'"%!��!�� �%��

�� �

 �
 �

�������!�� �%��

�� �

 �
 �

���� %������!�� �%��

�� �

 �
 �

�����!�� �%��

Policy Detail

RR Round-Robin Alternate placement on
the two servers

IF Intel (x86) First First fill the x86 server,
then use ARM

AF ARM First First fill the ARM server,
then use x86

CA Core-Aware Baseline optimization,
minimizes #cores

EA Energy-Aware Minimize expected
energy consumption

RR gives the worst results for all but Crypto-Dominated, where AF is worse

mailto:etienne.riviere@uclouvain.be

WoSC 10 — Arys, Carlier, and Rivière — etienne.riviere@uclouvain.be

Scheduling: results
• Complete energy consumption (server level)

• Measured at the power distribution unit

• CPU is one element of a whole!

• Five different workloads
• General: 25% load (cores) per category; x-dominated:

80% of the load for category x, 20% for the rest

• Within each category, balance the expected required
number of cores per function

• All runs successfully match the required number
of calls per second to each function

18

�� �

 �
 �

�

	

��

�!
%�
���
 �
#�
'�
�!
 $
&�

��
���

�� �� �#��

�� �

 �
 �

�#'"%!��!�� �%��

�� �

 �
 �

�������!�� �%��

�� �

 �
 �

���� %������!�� �%��

�� �

 �
 �

�����!�� �%��

Policy Detail

RR Round-Robin Alternate placement on
the two servers

IF Intel (x86) First First fill the x86 server,
then use ARM

AF ARM First First fill the ARM server,
then use x86

CA Core-Aware Baseline optimization,
minimizes #cores

EA Energy-Aware Minimize expected
energy consumption

Choosing to fill one server first, even when using ARM-first, does not produce consistent gains

mailto:etienne.riviere@uclouvain.be

WoSC 10 — Arys, Carlier, and Rivière — etienne.riviere@uclouvain.be

Scheduling: results
• Complete energy consumption (server level)

• Measured at the power distribution unit

• CPU is one element of a whole!

• Five different workloads
• General: 25% load (cores) per category; x-dominated:

80% of the load for category x, 20% for the rest

• Within each category, balance the expected required
number of cores per function

• All runs successfully match the required number
of calls per second to each function

18

�� �

 �
 �

�

	

��

�!
%�
���
 �
#�
'�
�!
 $
&�

��
���

�� �� �#��

�� �

 �
 �

�#'"%!��!�� �%��

�� �

 �
 �

�������!�� �%��

�� �

 �
 �

���� %������!�� �%��

�� �

 �
 �

�����!�� �%��

Policy Detail

RR Round-Robin Alternate placement on
the two servers

IF Intel (x86) First First fill the x86 server,
then use ARM

AF ARM First First fill the ARM server,
then use x86

CA Core-Aware Baseline optimization,
minimizes #cores

EA Energy-Aware Minimize expected
energy consumption

The Core-Aware strategy is better than RR in all cases (0.6% to 6.9% gains)

mailto:etienne.riviere@uclouvain.be

WoSC 10 — Arys, Carlier, and Rivière — etienne.riviere@uclouvain.be

Scheduling: results
• Complete energy consumption (server level)

• Measured at the power distribution unit

• CPU is one element of a whole!

• Five different workloads
• General: 25% load (cores) per category; x-dominated:

80% of the load for category x, 20% for the rest

• Within each category, balance the expected required
number of cores per function

• All runs successfully match the required number
of calls per second to each function

18

�� �

 �
 �

�

	

��

�!
%�
���
 �
#�
'�
�!
 $
&�

��
���

�� �� �#��

�� �

 �
 �

�#'"%!��!�� �%��

�� �

 �
 �

�������!�� �%��

�� �

 �
 �

���� %������!�� �%��

�� �

 �
 �

�����!�� �%��

Policy Detail

RR Round-Robin Alternate placement on
the two servers

IF Intel (x86) First First fill the x86 server,
then use ARM

AF ARM First First fill the ARM server,
then use x86

CA Core-Aware Baseline optimization,
minimizes #cores

EA Energy-Aware Minimize expected
energy consumption

The Energy-Aware strategy gets from 5.3% to 15.2% energy reduction from RR, and improves upon CA

mailto:etienne.riviere@uclouvain.be

WoSC 10 — Arys, Carlier, and Rivière — etienne.riviere@uclouvain.be

Scheduling: results
• Complete energy consumption (server level)

• Measured at the power distribution unit

• CPU is one element of a whole!

• Five different workloads
• General: 25% load (cores) per category; x-dominated:

80% of the load for category x, 20% for the rest

• Within each category, balance the expected required
number of cores per function

• All runs successfully match the required number
of calls per second to each function

18

�� �

 �
 �

�

	

��

�!
%�
���
 �
#�
'�
�!
 $
&�

��
���

�� �� �#��

�� �

 �
 �

�#'"%!��!�� �%��

�� �

 �
 �

�������!�� �%��

�� �

 �
 �

���� %������!�� �%��

�� �

 �
 �

�����!�� �%��

Policy Detail

RR Round-Robin Alternate placement on
the two servers

IF Intel (x86) First First fill the x86 server,
then use ARM

AF ARM First First fill the ARM server,
then use x86

CA Core-Aware Baseline optimization,
minimizes #cores

EA Energy-Aware Minimize expected
energy consumption

For Scientific/Web-dominated workload, no gain over CA as all ARM cores are already assigned

mailto:etienne.riviere@uclouvain.be

WoSC 10 — Arys, Carlier, and Rivière — etienne.riviere@uclouvain.be

Conclusion

• Serverless workloads can be scheduled with better energy
efficiency when considering the energy affinity of functions
• ARM’s better energy efficiency promise true for most, not all functions

• Our servers (traditional 1U, always-on DRAM/SSD/HDD/NICs) are
not necessarily the most energy-efficient; energy-aware scheduling is a
small piece of a larger puzzle

• Perspectives and future work abound
• Better models/studies of function co-location and resource contention

• CP-based scheduling has limited scalability: hierarchical and heuristic
approaches

• Online characterization (rather than offline); integration in a serverless
platform function lifecycle

• Impact of keepalive/pre-warming policies on energy consumption

19

mailto:etienne.riviere@uclouvain.be

WoSC 10 — 10th International Workshop on Serverless Computing
December 2—3, 2024 — Hong Kong

Energy-Aware Scheduling of a Serverless
Workload in an ISA-Heterogeneous Cluster

Simon Arys, Romain Carlier, and Etienne Rivière

UCLouvain, Belgium
etienne.riviere@uclouvain.be

Thanks for your attention! Any question?

