pbauplan

Zero-copy, Scale-up FaaS for Data Pipelines

Jacopo Tagliabue, Tyler Caraza-Harter, Ciro Greco
WoSC 10 @ Middleware 2024, Hong Kong

Backed by

innovation
endeavors

South Park
Commons

And by founders and executives at

% adWsSs %& redis

VOLTRON DATA

docker

CLOUDZ=RA

4 -)
specialized Faa$S runtime
bauplan = +

. data DAG abstractions

(as we could not add aruntime to Airflow, nor a data lake to Lambda)

Today is about Bauplan!

01 | Dataprocessingasfunctional DAGs
02 | Bauplan overview: architecture and abstractions
Anatomy of arun

04 | Conclusionand future work

4 data processing as functional DAGs 4

Data workloads, DAGs, Faas

| Pre-processingis acoreingredient for successful data-driven use cases (analytics, Bl, Al, etc.)

| Datapre-processingis done with pipelines, DAGs of functions wrangling raw data into cleaned
datasets.

transactions euro_selection

T T
SELECT =* e i def usd_by_country(

13 44 us

144 13 T FROM 3] T df=euro_selection
transactions) :

WHERE COUNTRY
IN ('IT',

usd_by_country

146 1 IT

_df = transform_input(df)
return _df
IFRI)

Q: can we take an existing FaaS
and make it data DAG aware?

Data workloads, DAGs, Faas

Data workloads are peculiar (vis-a-vis typical FaaS use cases)

Scalingup Large intermediate |/O Fast feedback loop

Data projectsare
exploratory: rapidly
iterating over
hypothesesis key! [3]

Industry traces p99.9 Functions move >100M

formemoryis 50-200 rows multiple timesina
GB![1] complex DAG! [2]

[llvanRenenetal 2024. Why TPC is not enough: An analysis of the Amazon Redshift fleet.
[2] https://github.com/jacopotagliabue/paas-data-ingestion

[3]Xinet al 2018. How Developers Iterate on Machine Learning Workflows

https://github.com/jacopotagliabue/paas-data-ingestion

Data workloads, DAGs, Faas

A: “NO!”

Smallmemory footprint
Smalll/O size

APACHE
| Built fordeployment, not iteration speed Writing an Action to Send Email ﬁ‘ OpenWhisk

Now we can build an action to send an email. The purpose of this example is to show
you how to create more complex actions involving third-party services and libraries.

This action is a bit more complicated than the actions we have seen before, because
we need to use and install an external library and deploy it with the action code. We
were able to skip the integration of libraries in the preceding steps only because the

cloudant package was included in the runtime, since it is part of the standard Open-
Platform Memory 1/0 payload Timeout Whisk deployment.
Let’s start by creating a folder and importing the library mailgun- js with the npm tool
distributed with Node.js:
Lambda 10GB 900s

$ mkdir sendmail
$ cd sendmail

OpenWhiSk 2GB 1MB 300s : :g: t:;:al{ --save mailgun-js

Now we can write a simple action that can send an email and place it in sendmail/
index.js. Substitute in the information you collected in the previous section when reg-
istering with Mailgun:

var mailgun = require("mailgun.js")
var mg = mailgun.client({username: 'api',
key: '<YOUR-PRIVATE-API-KEY>'}) [1]
function main(args) {
return mg.messages.create(
' <YOUR - SANDBOX -DOMAIN>.mailgun.org', {
from: "<YOUR-RECIPIENT-EMAIL>",
to: ["<YOUR-RECIPIENT-EMAIL>"],

000

2bauplan overview®

Not a FaaS, not a db, but a secret third thing

CLI/ SDK tolaunch DAGs
fromalaptop (pip install
bauplan)

Control plane (CP) performs
authentication and planning
(metadata only).

Data Plane (DP) executes the
transformations in customer
EC2s.

CUSTOMER AWS

rolm N £ o
[

!] ‘ l WORKER #2
I | I

I
“ (4) Nl T 1l)
Il | PR Il

] \ !
I l . 3)m_p WORKER. #|
I i I
Il Il
| [Y I
O i | [owmorasa] |

y /Y] 0h b

, | * I

Programming model: Lambda and Airflow

dockerfile

FROM public.ecr.aws/lambda/python:3.11
RUN pip install -r requirements.txt
COPY app.py $ILAMBDA_TASK_ROOT?

CMD ["app.lambda_handler"]

handler.py

def lambda_handler(event, context):
input_s3 = event.get('s3_path')

transform here and save back to s3
my_data = transform(input_s3)

save_to_s3(my_data)

return § "status _code": 200 %

def preprocess(

s3_in_url, s3 out_bucket, s3 out_prefix
):

Transform and save the result in S3
return "SUCCESS"

register the function in the overall DAG
preprocess_task = PythonOperator(
task_id="preprocessing",

dag=dag

)

[1] https://qithub.com/aws-samples/sagemaker-ml-workflow-with-apache-airflow

https://github.com/aws-samples/sagemaker-ml-workflow-with-apache-airflow

Programming model: Lambda and Airflow
Y,

Apache

Airflow

“Infra-as-code”

dockerfile but manual

FROM public.ecr.aws/lambda/python:3.11
RUN pip install -r requirements.txt
COPY app.py $$LAMBDA_TASK_ROOT?

CMD ["app.lambda_handler"]

def preprocess(

s3_in_url, s3 out_bucket, s3 out_prefix
):

Transform and save the result in S3
return "SUCCESS"

handler.py

register the function in the overall DAG
preprocess_task = PythonOperator(
task_id="preprocessing",

dag=dag

)

def lambda_handler(event, context):
input_s3 = event.get('s3_path')

transform here and save back to s3
my_data = transform(input_s3)

save_to_s3(my_data)

return § "status _code": 200 %

[1] https://qithub.com/aws-samples/sagemaker-ml-workflow-with-apache-airflow

https://github.com/aws-samples/sagemaker-ml-workflow-with-apache-airflow

Programming model: Lambda and Airflow

dockerfile

FROM public.ecr.aws/lambda/python:3.11
RUN pip install -r requirements.txt

COPY app.py 3LAMBDA_TASK_ROOT}# def preprocess(
CMD ["app.lambda_handler"] s3_in_url, s3_out_bucket, s3_out_prefix

):

. . # Transform and save the result in S3
Generic Inputs return "SUCCESS"
handler.py

register the function in the overall DAG
preprocess_task = PythonOperator(
task_id="preprocessing",

dag=dag

def lambda_handler(event, context):
input_s3 = event.get('s3_path')

transform here and save back to s3
my_data = transform(input_s3)

save_to_s3(my_data))

return § "status _code": 200 %

[1] https://qithub.com/aws-samples/sagemaker-ml-workflow-with-apache-airflow

https://github.com/aws-samples/sagemaker-ml-workflow-with-apache-airflow

Programming model: Lambda and Airflow

dockerfile

FROM public.ecr.aws/lambda/python:3.11

RUN pip install -r requirements.txt

COPY app.py 3LAMBDA_TASK_ROOT}# def preprocess(

CMD ["app.lambda_handler"] s3_in_url, s3_out_bucket, s3_out_prefix
):

Transform and save the result in S3
return "SUCCESS"

handler.py

def lambda_handler(event, context): |/O as side_effect # register the function in the overall DAG
input_s3 = event.get('s3_path') preprocess_task = PythonOperator(

transform here and save back to s3 task_id="preprocessing”,
my_data = transform(input_s3) dag=dag

save_to_s3(my_data))

return § "status _code": 200 %

[1] https://qithub.com/aws-samples/sagemaker-ml-workflow-with-apache-airflow

https://github.com/aws-samples/sagemaker-ml-workflow-with-apache-airflow

Q: canwe design better Faa$S
abstractions for data DAGs?

Programming model: bauplan

@bauplan.model ()
@bauplan.python(
"3.11",
pip=1"pandas": "2.2"%

)
def euro_selection(
data=bauplan.Model (
"transactions",
columns=["id", "usd", "country"],
filter="eventTime BETWEEN 2023-01-01 AND
2023-02-01"
)

filtering here
return a dataframe
return _df

@bauplan.model(materialize=True)
@bauplan.python(
"3.10",
pip={"pandas": "1.5.3"}
)
def usd_by_country(
data=bauplan.Model("euro_selection")

aggregation here
return a dataframe
return _df

Programming model: bauplan

Infra-as-code

@bauplan.model () @bauplan.model (materialize=True)
@bauplan.python(@bauplan.python(

"3.11", "3.10",

pip={"pandas": "2.2"% pip={"pandas": "1.5.3"}
))

def euro_selection(def usd_by country(

data=bauplan.Model (data=bauplan.Model("euro_selection")
"transactions", 9

columns=["id", "usd", "country"], # aggregation here
filter="eventTime BETWEEN 2023-01-01 AND # return a dataframe
2023-02-01" return _df
)

filtering here
return a dataframe
return _df

Programming model: bauplan

Dataframes as inputs

@bauplan.model () @bauplan.model (materialize=True)
@bauplan.python(@bauplan.python(

"3.11", "3.10",

pip={"pandas": "2.2"% pip={"pandas": "1.5.3"}
))

def euro_selection(def usd_by country(

data=bauplan.Model (data=bauplan.Model("euro_selection")
"transactions", 9

columns=["id", "usd", "country"], # aggregation here
filter="eventTime BETWEEN 2023-01-01 AND # return a dataframe
2023-02-01" return _df
)

filtering here
return a dataframe
return _df

Programming model: bauplan

I/0 chaining

@bauplan.model () @bauplan.model (materialize=True)
@bauplan.python(@bauplan.python(
"3.11", "3.10",
pip={"pandas": "2.2"% pip={"pandas": "1.5.3"}
))
C[SMcuro_selectionft def usd_by_country(

data=bauplan.Model (data=bauplan.Model ("R RTITISSy")
"transactions", 9
columns=["id", "usd", "country"], # aggregation here
filter="eventTime BETWEEN 2023-01-01 AND # return a dataframe
2023-02-01" return _df

)

filtering here
return a dataframe
return _df

anatomy of arun

bauplanrun =

4 plan
+
environment
+

_ datamovement

_/

Planning

USER CODE PLATFORM CODE

@bauplan.model ()
@bauplan.python(
"3.11",
pip=1"pandas": "2.2"%

)
def euro selection(
data=bauplan.Model(
"transactions",
columns=["did", "usd", "country"],
filter="eventTime BETWEEN 2023-01-01 AND
2023-02-01"
)

filtering here
return a dataframe
return _df

Planning

%

transactions

| Logical view. What are the
dependencies as expressed
in USER CODE?

| +ransactions

| Physical view. What are the " " ¥
Dockerandlceberg
instructions to finalize & &
PLATFORM CODE?

| Workerview. What artifacts
and packages we have
already /what dowe need to
fetch?

Building function environments

| Assemble, don’tbuild.Functions
runin dockerized environments
which mount packagesfroma
local cache. [1]

| NoDockeronthe client, no PyPI
bandwidth bottlenecks, no ECR
update: adding apackageis15x
faster than AWS Lambda!

Table 2: Time to add Prophet to a serverless DAG

Task Seconds
AWS Lambda*

Update ECR container and function 130 (80 + 50)
Snowpark

Update Snowpark container 35
bauplan

Update runtime 5/ 0 (cache)

[l Hendrickson et al. 2016, Serverless Computation with OpenLambda

|l/0 and data movement

Arrow everywhere. Dataframe layout
in-memory and over the wire is Apache Arrow.

“Zero-copy”

| Within aworker, tables can be zero-copy
shared between functions (100 x faster
than S3)

| Acrossworkers, an Arrow streamis as fast
aslocal parquet files (no-serialization
cost)

| Arrow fragmentsinaworker cache canbe
combinedina “view” (saves 30% S3reads
onTCP-H100)

3] 12 Nov 2024

Table 3: Reading a dataframe from a parent (c5.9xlarge), avg.
(SD) over 5 trials

| 10M rows (6 GB) ‘ 50M rows (30 GB)

Parquet file in S3 1.26 (0.14) 6.14 (0.98)
Parquet file on SSD 0.92 (0.09) 4.37 (0.15)
Arrow Flight 0.96 (0.01) 4.69 (0.01)

Arrow IPC 0.01 (0.00) 0.03 (0.01)

Faa$S and Furious: abstractions and differential
caching for efficient data pre-processing

Jacopo Tagliabue Ryan Curtin Ciro Greco
Bauplan Labs Bauplan Labs Bauplan Labs
New York, US Atlanta, US New York, US
Jjacopo.tagliabue @bauplanlabs.com
Ab: Data li are the bread and
butter of any successful Al pmject We introduce a novel
pr model for in a data allowing ‘ - < N
users to interact declaratively with assets in object storage. ‘ Raw data Cleaned data Final data ‘ Training data
Motivated by real-world industry usage patterns, we exploit h 7y g
these new abstractions with a columnar and differential cache _mQ_I _w
to maximize iteration speed for data scientists, who spent most L

of their time in pre-processing — adding or removing features,

restricting or relaxing time windows, wrangling current or older Fig 1. A sample multi-language, cloud data pipeline. The pipeline takes
datasets. We show how the new cache works transparently raw data in object storage (S3) to a final training dataset, by going through
across programmmg languages schemas and time windows, and intermediate steps that wrangle dataframes into progressively cleaner data
provide p y on its i on standard data assets.

workloads.

https://arxiv.org/pdf/2411.08203

#* conclusion

Conclusion and future work

| TL;DR: by co-designing abstractions (unique signature) and runtime features (Arrow layout,
Python-SQL only) for data workloads, bauplan provides better performance and FaaS
ergonomics to data practitioners.

| Welook forward to sharing with the community further results in memory optimization and
function schedulingin a single-tenant environment.

Bauplan: zero-copy, scale-up FaaS for data pipelines (pre-print)

| 22 Oct 2024

Jacopo Tagliabue Tyler Caraza-Harter Ciro Greco
Bauplan Labs University of Wisconsin-Madison Bauplan Labs
Abstract January data, then scale up to a year, with a corresponding, instanta-

Chaining functions for longer workloads is a key use case for FaaS
platforms in data applications. However, modern data pipelines
differ significantly from typical serverless use cases (e.g., webhooks
and microservices); this makes it difficult to retrofit existing pipeline
frameworks due to structural constraints. In this paper, we describe
these limitations in detail and introduce bauplan, a novel FaaS
programming model and serverless runtime designed for data prac-
titioners. bauplan enables users to declaratively define functional
Directed Acyclic Graphs (DAGs) along with their runtime environ-
ments, which are then efficiently executed on cloud-based workers.
We show that bauplan achieves both better performance and a
superior developer experience for data workloads by making the
trade-off of reducing generality in favor of data-awareness.

CCS Concepts

neous change of dataframe size. In this light, data workloads seem to
be a natural fit for Function-as-a-Service (FaaS) platforms designed
to efficiently handle bursty, functional, and event-driven tasks. Un-
fortunately, existing FaaS runtimes fall short in practice as they
were primarily designed to support the execution of many simple,
independent functions that produce small outputs. Although popu-
lar FaaS$ platforms (e.g., AWS Lambda [5], Azure Functions [17], and
OpenWhisk [4]) have added support for function chaining, their
capabilities fall short for data pipelines. It is therefore not surprising
that widely used data engineering frameworks (e.g., Airflow [1],
Prefect [19], and Luigi [23]) lack native integration with serverless
runtimes.

We group our contributions in two main categories. First, based
on industry experience, relevant literature, and system traces, we de-

tail the specific demands data pipelines place on FaaS platforms and
f P S sy by [G Ty ey Ly b ey el o § .y K 7 i B gy A0 o) RO, ey

https://arxiv.org/pdf/2410.17465

