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The	Problem
• Data	generation	rates	are	exploding

• Complex	analytics	processes

• The	data	lifecycle	often	involves	multiple	
organisations,	machines,	and	people

This	creates	a	significant	strain	on	researchers

• Best	management	practices	(cataloguing,	
sharing,	purging,	etc.)	can	be	overlooked

• Useful	data	may	be	lost,	siloed,	or	forgotten



RIPPLE:	A	prototype	responsive	storage	solution
Transform	static	data	graveyards	into	active,	responsive	storage	devices

• Automate	data	management	processes	and	enforce	best	practices

• Reliable	event-driven	execution

• Users	focused:	simple	if-trigger-then-action	rules
• Accessible	to	all	end	users,	not	just	admins	and	expert	users

• Users	can	set	data	management	policies	and	then	forget	about	them

• Combine	rules	into	flows	to	control	end-to-end	data	transformations

• Passively	waits	for	filesystem	events	(very	little	overhead)

• Filesystem	agnostic	– works	on	both	edge	and	leadership	platforms



RIPPLE	Architecture	(updated)
Agent: 

• Sits locally on the machine

• Detects & filters filesystem events

• Facilitates execution of actions

• Can receive new recipes

Service: 

• Serverless architecture

• Lambda functions process events

• Orchestrates execution of actions

• Records and manages execution of flows
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RIPPLE	Agent
Responsible	for	detecting	and	reporting	events	of	interest

Filesystem	agnostic	– uses	an	appropriate	monitor	for	the	FS
• Leverages	Python	Watchdog	observers	

• inotify,	polling,	kqueue,	etc.

• Globus	Transfer	API	detects	globus events	(transfer,	create,	delete)

Rules	are	retrieved	from	the	cloud	service	and	stored	in	an	SQLite	database

Hybrid	filtering	model:
• Local	monitor	checks	events	against	active	rules
• If	they	match,	they	are	reported	to	the	cloud	for	processing
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RIPPLE	Runner
Abstracts	execution	environments	and	allows	job	submission/status	checks	via	API

Has	a	UUID	and	polls	for	actions	– rules	can	invoke	actions	on	any	runner

Can	be	deployed	almost	anywhere:
Locally	initiate	Docker	containers,	singularity	exec	commands,	and	subprocesses to	act	on	local	files	
(metadata	extraction,	dispatch	jobs,	etc.)

Cloud	runner	(backed	by	Lambda	functions)	performs	cloud	functions:	Globus	transfers,	create	shared	
endpoints,	send	emails,	invoke	other	Lambda	functions	etc.	This	functions	an	API	gateway	exposing	the	
runner	API	and	proxying requests	through	to	Lambdas

HPC	systems	employ	a	runner	for	exposed	batch	submission	(currently	just	SLURM)
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RIPPLE	Cloud	Service
• Gateway API exposes Ripple service

• Get rules

• Report events

• Update event status

• API either proxies Lambda functions (get rules) or inserts payload into SQS queue.

• Once an event reaches the SQS, it should not be lost

• SQS queue reports to SNS topic, triggering Lambda functions to pull from the queue
• Dead letter queue after 3 processing failures

• CloudWatch timer triggers “cleanup” and “checkup” functions to process events still 
on the queue and outstanding jobs
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RIPPLE	Rules
IFTTT-inspired	programming	model:	

Triggers describe	where	the	event	is	coming	
from	(filesystem	create	events)	and	the	
conditions	to	match	
(/path/to/monitor/.*.h5)

Actions describe	what	service	to	use	(e.g.,	
globus transfer)	and	arguments	for	
processing	(source/dest endpoints).



Event	Detection
Goal:	be	able	to	monitor	HPC	storage	
workload	(>3	mil	events/day)

Inotify vs	polling

Create/touch/delete	10,000	files	and	
record	event	reporting	duration	(20k	
total)

Machines:
• Laptop
• c4.xlarge	instance
• Edison	login	node	(gpfs)



Filtering	overhead
Goal:	Determine	overhead	
caused	by	filtering	events	
locally

Measure	differences	in	
event/second	detection

Filtering	requires	matching	
directory	path	and	file	
extension

Polling	is	odd	as	it	only	polls	
once	every	second



Lambda	Performance
Goal:	Understand	lambda	
performance	for	different	tasks

Cold	vs	Warmed	functions

Actions:
• Globus	transfer
• SMS	email
• DynamoDB insert/query

Transfers	require	a	handshake	
with	the	Globus	service,	which	
also	communicates	with	the	
endpoints



Use	Case:	Large	Synoptic	Survey	Telescope
Developed	a	representative	testbed	of	the	LSST	storage	requirements

• Automatically	propagate	data	between	storage	tiers	and	facilities

• Invoke	Docker	containers	to	extract	metadata	and	maintain	a	file	catalog

• Compress	and	archive	files

• Recover	deleted/corrupted	files	when	delete	and	modification	events	occur
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Use	Case:	Advanced	Light	Source
Deployed	Ripple	on	an	ALS	and	NERSC	machine	to	automate	data	analysis

• At	ALS: Detect	new	heartbeat	beamline	data	and	initiate	transfer	to	NERSC

• At	NERSC: Extract	metadata,	create	sbatch	file,	dispatch	analysis	job	to	

Edison	queue,	detect	result	and	transfer	back	to	ALS

• At	ALS: create	a	shared	endpoint,	notify	collaborators	of	result	via	email



New	Use	Cases

• Automated	metadata	extraction	and	ingestion	into	Globus	Search
• Uses	singularity	and	Apache	Tika to	extract	metadata

• Metadata	is	wrapped	into	gmeta (json)	documents	and	ingested	into	search

• Offline	feedback	mechanism	for	workflows

• Researchers	want	a	human	quality	control	component

• Have	Ripple	send	subsets	of	data	to	researchers	via	email	to	check	it

• Trigger	actions	based	on	content	of	reply	messages



Summary
Event-driven	automation	of	data	management	practices

User	focused

Monitoring	agent	agnostic	to	underlying	filesystem

Serverless event	processing	and	action	orchestration	



Future	Work
More	use	cases!

More	runners

Scalable	&	high	performance	event	monitors	for	leadership	resources

Programming	model	for	event-based	data	management

Integration	with	Globus


