
Responsive	Storage:	
Home	Automation	for	

Research	Data	Management

Ryan	Chard,	Kyle	Chard,	Jason	Alt,	Dilworth	Y.	Parkinson,	Steve	Tuecke,	and	Ian	Foster
Argonne	National	Lab,	University	of	Chicago,	and	Lawrence	Berkeley	National	Lab

The	Problem
• Data	generation	rates	are	exploding

• Complex	analytics	processes

• The	data	lifecycle	often	involves	multiple	
organisations,	machines,	and	people

This	creates	a	significant	strain	on	researchers

• Best	management	practices	(cataloguing,	
sharing,	purging,	etc.)	can	be	overlooked

• Useful	data	may	be	lost,	siloed,	or	forgotten

RIPPLE:	A	prototype	responsive	storage	solution
Transform	static	data	graveyards	into	active,	responsive	storage	devices

• Automate	data	management	processes	and	enforce	best	practices

• Reliable	event-driven	execution

• Users	focused:	simple	if-trigger-then-action	rules
• Accessible	to	all	end	users,	not	just	admins	and	expert	users

• Users	can	set	data	management	policies	and	then	forget	about	them

• Combine	rules	into	flows	to	control	end-to-end	data	transformations

• Passively	waits	for	filesystem	events	(very	little	overhead)

• Filesystem	agnostic	– works	on	both	edge	and	leadership	platforms

RIPPLE	Architecture	(updated)
Agent:

• Sits locally on the machine

• Detects & filters filesystem events

• Facilitates execution of actions

• Can receive new recipes

Service:

• Serverless architecture

• Lambda functions process events

• Orchestrates execution of actions

• Records and manages execution of flows

Ripple
Runner

Ripple Agent

SQLite

Filesystem

Docker,
PBS,

SLURM,
…

Lambda Functions

Monitor

Observers

Ripple Cloud API

Process

SQS Queue of events

RIPPLE	Agent
Responsible	for	detecting	and	reporting	events	of	interest

Filesystem	agnostic	– uses	an	appropriate	monitor	for	the	FS
• Leverages	Python	Watchdog	observers	

• inotify,	polling,	kqueue,	etc.

• Globus	Transfer	API	detects	globus events	(transfer,	create,	delete)

Rules	are	retrieved	from	the	cloud	service	and	stored	in	an	SQLite	database

Hybrid	filtering	model:
• Local	monitor	checks	events	against	active	rules
• If	they	match,	they	are	reported	to	the	cloud	for	processing

Ripple Agent

SQLite

Filesystem

ProcessMonitor

Observers

RIPPLE	Runner
Abstracts	execution	environments	and	allows	job	submission/status	checks	via	API

Has	a	UUID	and	polls	for	actions	– rules	can	invoke	actions	on	any	runner

Can	be	deployed	almost	anywhere:
Locally	initiate	Docker	containers,	singularity	exec	commands,	and	subprocesses to	act	on	local	files	
(metadata	extraction,	dispatch	jobs,	etc.)

Cloud	runner	(backed	by	Lambda	functions)	performs	cloud	functions:	Globus	transfers,	create	shared	
endpoints,	send	emails,	invoke	other	Lambda	functions	etc.	This	functions	an	API	gateway	exposing	the	
runner	API	and	proxying requests	through	to	Lambdas

HPC	systems	employ	a	runner	for	exposed	batch	submission	(currently	just	SLURM)

Ripple
Runner

Docker,
PBS,

SLURM,
…

RIPPLE	Cloud	Service
• Gateway API exposes Ripple service

• Get rules

• Report events

• Update event status

• API either proxies Lambda functions (get rules) or inserts payload into SQS queue.

• Once an event reaches the SQS, it should not be lost

• SQS queue reports to SNS topic, triggering Lambda functions to pull from the queue
• Dead letter queue after 3 processing failures

• CloudWatch timer triggers “cleanup” and “checkup” functions to process events still
on the queue and outstanding jobs

Lambda Functions

Ripple Cloud API

SQS Queue of events

RIPPLE	Rules
IFTTT-inspired	programming	model:	

Triggers describe	where	the	event	is	coming	
from	(filesystem	create	events)	and	the	
conditions	to	match	
(/path/to/monitor/.*.h5)

Actions describe	what	service	to	use	(e.g.,	
globus transfer)	and	arguments	for	
processing	(source/dest endpoints).

Event	Detection
Goal:	be	able	to	monitor	HPC	storage	
workload	(>3	mil	events/day)

Inotify vs	polling

Create/touch/delete	10,000	files	and	
record	event	reporting	duration	(20k	
total)

Machines:
• Laptop
• c4.xlarge	instance
• Edison	login	node	(gpfs)

Filtering	overhead
Goal:	Determine	overhead	
caused	by	filtering	events	
locally

Measure	differences	in	
event/second	detection

Filtering	requires	matching	
directory	path	and	file	
extension

Polling	is	odd	as	it	only	polls	
once	every	second

Lambda	Performance
Goal:	Understand	lambda	
performance	for	different	tasks

Cold	vs	Warmed	functions

Actions:
• Globus	transfer
• SMS	email
• DynamoDB insert/query

Transfers	require	a	handshake	
with	the	Globus	service,	which	
also	communicates	with	the	
endpoints

Use	Case:	Large	Synoptic	Survey	Telescope
Developed	a	representative	testbed	of	the	LSST	storage	requirements

• Automatically	propagate	data	between	storage	tiers	and	facilities

• Invoke	Docker	containers	to	extract	metadata	and	maintain	a	file	catalog

• Compress	and	archive	files

• Recover	deleted/corrupted	files	when	delete	and	modification	events	occur
Custodial Store

(Chile)

Archive: ANL’s
Sparrow

Archiver

Landing

Magnetic

Forwarder

File
Catalog

File
Catalog

Custodial Store
(NCSA)

Landing

Magnetic

Archive

metadata	
minid
gzip

catalog
....

1.

2.
3.

4.

6.

7.

Use	Case:	Advanced	Light	Source
Deployed	Ripple	on	an	ALS	and	NERSC	machine	to	automate	data	analysis

• At	ALS: Detect	new	heartbeat	beamline	data	and	initiate	transfer	to	NERSC

• At	NERSC: Extract	metadata,	create	sbatch	file,	dispatch	analysis	job	to	

Edison	queue,	detect	result	and	transfer	back	to	ALS

• At	ALS: create	a	shared	endpoint,	notify	collaborators	of	result	via	email

New	Use	Cases

• Automated	metadata	extraction	and	ingestion	into	Globus	Search
• Uses	singularity	and	Apache	Tika to	extract	metadata

• Metadata	is	wrapped	into	gmeta (json)	documents	and	ingested	into	search

• Offline	feedback	mechanism	for	workflows

• Researchers	want	a	human	quality	control	component

• Have	Ripple	send	subsets	of	data	to	researchers	via	email	to	check	it

• Trigger	actions	based	on	content	of	reply	messages

Summary
Event-driven	automation	of	data	management	practices

User	focused

Monitoring	agent	agnostic	to	underlying	filesystem

Serverless event	processing	and	action	orchestration	

Future	Work
More	use	cases!

More	runners

Scalable	&	high	performance	event	monitors	for	leadership	resources

Programming	model	for	event-based	data	management

Integration	with	Globus

