Serverless Computing: Design,
Implementation, and Performance

Garrett McGrath and Paul R. Brenner




. 5] NOTRE DAME
Introduction
Serverless Computing
* Explosion in popularity over the past 3 years n
* Offerings from all leading cloud providers
*However, few performance comparisons of these platforms exist

This Presentation />\/:
* Explore serverless design through a new prototype platform

* Focused on performant execution of functions

*Serverless paradigms create long function chains, real-
time pipelines; latency matters

* Develop cross-platform performance tests

* Measure performance of existing commercial platforms and
prototype

<




Prototype Overview

Serverless Prototype Platform

*Implemented in C#/.NET

* Utilizes Windows containers as function execution environments
* Docker provides container management functionality

* Deployed on a variety of services in Microsoft Azure

* Available: https://github.com/mgarrettm/serverless-prototype

Prototype Purpose

* Research prototype on which to explore serverless platform
design

* Baseline to compare against existing platforms

Prototype Goals
* Efficient execution of functions
* Simplicity of implementation

UNIVERSITY OF
NOTRE DAME

docker

== Microsoft Azure


https://github.com/mgarrettm/serverless-prototype

Prototype Design

£ () Function

UNIVERSITY OF

NOTRE DAME

Functions!

* Functions are the unit of
deployment and scaling

*Simple goals: support basic CRUD
and synchronous execution of
functions

* How to manage functions?
*Where to execute functions?
* How to discover those locations?



Prototype Design

&> Container

£ () Function

UNIVERSITY OF

NOTRE DAME

Function Containers

* Function resides within container
for security and resource isolation

* Containers are reused to offset
unwieldy start-up times

* Windows Server Containers
chosen as container technology

* Windows “Nano” Server image
(801 MB) used

* Alpine Linux is 18 MB
*Node.js v6.9.5 runtime supported



Prototype Design

& Worker VM

&> Container

£ () Function

& Container

£ () Function

UNIVERSITY OF

NOTRE DAME

Worker VMs

* Handles container lifecycle and
accepts function execution
requests

* Containers expire after 15
minutes without execution

* Many workers; many containers
per worker

* Important choice between
existing container management
systems and custom solution



Prototype Design

Table
Storage

Web API

Blob
Storage

& Worker VM

&> Container

£ () Function

& Container

£ () Function

UNIVERSITY OF

&5/ NOTRE DAME

Web Service

* External-facing component of
platform

* Web API provides function CRUD
and execution

* Function metadata stored in
Azure Table Storage

* Function code artifacts stored in
Azure Blob Storage and linked in
metadata



Prototype Design

& Worker VM

&> Container

£ () Function

& Container

Table
Storage Warm Stacks
Web API
Blob Cold Queue
Storage

£ () Function

UNIVERSITY OF

NOTRE DAME

Container Discovery

* Workers reserve memory space as
allocations and store their
locations in messaging layer

* Unassigned container locations
reside in cold queue

* LIFO warm stack for each function
to store assigned containers

* Workers are source of truth for
container state (expiration,
inconsistent data)



Prototype Design

e Redis

& Worker VM

&> Container

£ () Function

& Container

£ () Function

Table
Storage Warm Stacks
Web API
Blob Cold Queue
Storage

UNIVERSITY OF

&5/ NOTRE DAME

Redis

* Can afford to compromise
consistency and durability!

* Availability and load balancing
may be problematic

* Consistent hashing service is
viable alternative

* Azure Storage Queues do not
provide LIFO functionality



UNIVERSITY OF

NOTRE DAME

Performance Framework

Testing Framework

* Developed a basic cross-platform testing framework in Node.js using the Serverless Framework
* Available: https://github.com/mgarrettm/serverless-performance

* Created a Serverless Framework provider plugin to deploy functions to the prototype
* Available: https://github.com/mgarrettm/serverless-prototype-plugin

* Deploys a function that immediately returns with a unique id of its instance

Testing Methodology
* Tests conducted from virtual machines in same datacenter as functions

* Exception: IBM OpenWhisk tested from US-SouthCentral datacenter in Microsoft Azure (<10ms latency)
* Tests measure response time using test machine clock

* Network latency unaccounted for (test machines placed as close as possible to function)

* Tests run in March 2017
* Platforms change frequently


https://github.com/mgarrettm/serverless-performance
https://github.com/mgarrettm/serverless-prototype-plugin

Performance Results

Concurrency Test

* Designed to measure
throughput of serverless
platforms

* Reissues each request
immediately after receiving the
response from the previous call

* Increase concurrent requests
from 1 to 15

550+

500+

450+

a
o
N

w

o

o
N

[\®]

[8)]

o
|

N
o

Executions Per Second
et

150+

100+

UNIVERSITY OF
NOTRE DAME

. Google Cloud Functions
AWS Lambda

. IBM OpenWhisk

) Azure Functions

- Prototype

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of Concurrent Requests



Performance Results

Concurrency Test

* Designed to measure
throughput of serverless
platforms

* Reissues each request
immediately after receiving the
response from the previous call

* Increase concurrent requests
from 1 to 15

Execution Latency (s)

2.0+
1.8+
1.6+
1.4
1.2
1.0+
0.8
0.6+
0.4
| = ¥
L — L

0.0+
1

0.2

UNIVERSITY OF
NOTRE DAME

. Google Cloud Functions
AWS Lambda

. IBM OpenWhisk

B Azure Functions

. Prototype

2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of Concurrent Requests



Performance Results

Concurrency Test

* Designed to measure
throughput of serverless
platforms

* Reissues each request
immediately after receiving the
response from the previous call

* Increase concurrent requests
from 1to 15

Number of Function Instances

20+

18+

UNIVERSITY OF
NOTRE DAME

. Google Cloud Functions
AWS Lambda
. Azure Functions

- Prototype

2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of Concurrent Requests



Performance Results

Concurrency Test

* Designed to measure
throughput of serverless
platforms

* Reissues each request
immediately after receiving the
response from the previous call

* Increase concurrent requests
from 1to 15

350+

300+

N
o
e

)]
o
it

150+

Number of Function Instances

-
o
b

50+

UNIVERSITY OF
NOTRE DAME

. Google Cloud Functions
AWS Lambda

. IBM OpenWhisk

. Azure Functions

. Prototype

P ————

2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of Concurrent Requests




Performance Results

Backoff Test

* Designed to measure latency
of serverless platforms and
show container expiration
thresholds

*Increase time between
consecutive requests from 1
to 30 minutes

Execution Latency (s)
w
o

g
o

6.0+

5.5+

o
o

B
o

B
o

w
w
|

g
3

-
W
|

=y
o
|

0.5

0.0

1 Azure Functions
. Prototype

UNIVERSITY OF
NOTRE DAME

. Google Cloud Functions
AWS Lambda
B IBM OpenWhisk

123 4 5 7 9 11 13 15 18 21 24 27 30
Time Since Last Execution (m)



UNIVERSITY OF

NOTRE DAME

Future Work

Serverless Prototype
* Asynchronous executions
* More difficult because executions must be guaranteed once success is returned to client
* Durable tracking of active executions alongside existing execution pipeline
* More advanced container support
* Windows Server Containers are limited in their operations (pausing/resizing)
* Support for Linux Containers opens up opportunities to improve cold start performance
* Docker’s path towards modularization with Moby could be useful in tailoring Docker for FaaS

Performance Framework
* Asynchronous execution performance testing
* Accurate timing is more difficult
*Services like X-Ray in AWS help, but are not cross-platform



UNIVERSITY OF

&5/ NOTRE DAME

Questions?



