
Leveraging the Serverless Architecture for
Securing Linux Containers

NiltonBila, PaoloDettori,Ali Kanso, YujiWatanabe*, Alaa Youssef
IBMT.J. WatsonResearchCenter –NewYork

*IBMResearch- Tokyo, IBM Japan Ltd.

Ali Kanso, PhD
Senior CloudSWEngineer
IBMT.J. Watson,NY

Leveraging the Serverless Architecture for
Securing Linux Containers

Shipping	Code

Binary
• exe
• elf

Packaged
• JAR
• WAR
• Gem

Containerized

• Images	(dockerfiles)

But	Container	images	can	have	vulnerabilities baked	in	them!

Software	Vulnerabilities
Pa
ck
ag
e
Vu

ln
er
ab
ili
ty

E.g.: Ghost
Vulnerability in gLibc
library < 2.18

(2000à2013)

Co
nf
ig
ur
at
io
n
Vu

ln
er
ab
ili
ty

E.g.: OpenSSH installed &
#PasswordAuthentication
yes
#PermitEmptyPasswords

Yes (or even no)

M
al
w
ar
e
Si
gn
at
ur
e

E.g.:
- Viruses
- Worms

- SpyWares
- Trojan Horses

Scanning	for	Vulnerabilities

IBM	Vulnerability	Advisor

Docker Security	Scanning

ü Scan	images	and	deployed	containers
ü Vulnerabilities	in	installed	software	packages
ü Security	configuration	checks
ü Malware	signature	detection

Clustering	Containers

Clustering	can	be	overwhelming

Kubernetes	can	help

What	is	Kubernetes?

Applications Containerized Clustered

Kubernetes	master

Kubernetes	agent

Containerized	appsContainerized	appsContainerized	apps
ü Scheduling
ü Monitoring
ü Recovery	management
ü Auto-scaling
ü Authorization/Authentica

tion…

Master	Node

Worker	Node
(Minion)

ü Monitoring
ü Reporting
ü Executing	master’s	

recommendations…

Kubernetes	Resource	Organization	
Example	pod	
description

kind:	Pod
metadata:
name:	myPod
spec:
containers:
- name:	sleep-forever
image:	pause:0.8.0
resources:
limits:
memory:	1000Mi

K8s	APIs

Core	Group Extensions	Groupmonolithic	v1	API

REST	path	/api/v1
ü Pods
ü Services
ü Replication	controllers
ü Resource	quotas
ü Nodes
ü Endpoints
ü …

REST	path	/apis/extensions/$VERSION
ü Deployments
ü HorizontalPodAutoscalers
ü Ingress
ü Jobs
ü DaemonSets
ü Third	party	resources
ü …

K8s	Operators	

K8s	API Third	party	resources Operators
<<Leverage>><<Extend>>

K8s	Third	Party	Resource	(TPR)

K8s	Master
(API	server)

API	path
Ø TPR

Ø Securityactions
Ø quarantine<<CRUD	operations>>

Third-Party	Software	(executable)

<<Watch	&	react>>

Controller:	bridging	the	actual	state	
with	the	desired	state

Resource	instance:	reflecting	the	
desired	state

Security	action,	to	quarantine or	
delete container	

http://192.168.0.15:8080/apis/myorg.com/v1/namespaces/default/securityactions/quarantine

Kubernetes	Limitation
• K8s	does	not	implement	the	needed	range	of	actions	to	contain	a	threat

– Limited	to:	Kill	pod,	Rolling-Upgrade	(involves	killing)
Pa
ck
ag
e
Vu

ln
er
ab
ili
ty

Quarantine
until patched

Co
nf
ig
ur
at
io
n
Vu

ln
er
ab
ili
ty

Gracefully shutdown
and preserve state
for future
investigation

M
al
w
ar
e
Si
gn
at
ur
e

Immediate kill

We	need	to	have	severity-based	actions!

Introducing	the	Security	Enforcement	Operator

Kubernetes	master Kubernetes	Worker

K8s	
API-server

Docker Docker

OS

PodsPods

OS

SEO

ü Quarantine/Unqarantine
ü Pause/unpause
ü Stop/start
ü Fast-delete
ü Graceful-delete

Net-plugin

Based	on	scanning	results

Vulnerability	Scanner

Registry	Monitor
K8s	WorkersImage	
Registries VS-agent

scan	
images

K8s	WorkersK8s	Worker Nodes

VS-agent

PodsPods

scan	deployed	
containers

container	
configuration	
information

Thread	
Intelligenceingest	threat	data	

periodically

Vulnerability	Scanner

security	configuration	checks

package	vulnerability	detection

malware	signature	detection

?
Notification	
+	summary	of	
vulnerability	findings

(Report	from	Vulnerability	Advisor)

image	
configuration	
information

VS	Report	Example
• Identify	specific	software	package	versions	in	the	container	with	disclosed	vulnerabilities

• Identify	specific	issues	with	the	container	configurations

Leveraging the Serverless Architecture for
Securing Linux Containers

K8s	Workers

VS

OpenWhisk

K8s	API	server

K8s	Workers

CRUD	operations

VS-agentSEO

PodsPods

K8s	API	server

PoliciesPolicies

Add/Remove/Modify
Action	based	policies

Introducing	OpenWhisk

?

Why	OpenWhisk?

• OpenWhisk is	the	Glue	between	VS	and	K8s,	
it	enables:
– Different policies for	different	users
–Multiple Clusters register	to	the	same	
OpenWhisk deployment

– Central point of	policy	management	across	
clusters

Action	based	policies

Report	API	and	Notifications	on	Vulnerability	
Scanner

• Supports	scans	for	multiple	registered	Kubernetes	clusters.
• Provide	RESTful APIs	for	access	to	Vulnerability	reports	for	
each	container

• Use	authentication	token	to	restrict	access	to	cluster	data	at	
the	granularity	of	Kubernetes	namespaces.

• Notify	events	with	new	vulnerability	findings	to	registered	
OpenWhisk API	endpoints.

• Trigger	action	invocations	to	the	OpenWhisk API	endpoints	
registered	for	the	Kubernetes	cluster.

Notifications

• User	creates	action	with	known	URL	endpoint:
– https://openwhisk.ng.bluemix.net/api/v1/web/<USER>/policy

• Vulnerability	Scanner	posts	vulnerability	notification	to	policy	
endpoint

{
“clusterid”: “xyz”,
“podid”: “nginx- 3382653011-3p4p0”,
“vulnerability_type”: “package”,
“vulnerability_status”: “vulnerable”

}

Per	User	Policy!

• import vs
import kubernetes

def main(params):
findings = vs.get_findings(pod_id, timestamp)
vulnerable_packages = findings['vulnerable_packages']
insecure_configs = findings['insecure_configurations']

if len(vulnerable_packages) > 0:
kubernetes.snapshot(pod_id) kubernetes.terminate_graceful(pod_id)
return {'text': 'Deleted pod ' + pod_id }

if 'remote_shell_installed' in insecure_configs:
kubernetes.quarantine(pod_id)
return {'text': 'Quarantined pod ' + pod_id}

return {'text': 'Container was not modified ' + pod_id}

Serverless Policy

Terminate_faste(pod_id)

User1: marketing

User2: accounting

Terminated pod

VS OpenWhisk SEOK8s Networking

Quarantine	Pod

Pod	quarantined

Threat	contained

Quarantine	container(s)

Container(s)	quarantined	

New	Pod	created
Scanning	triggered

Vulnerability	found

Quarantine	Pod

Execute	policy

Interaction	Summary

Related	Work

Securing	
Containers

Starlight implements	a	kernel	module	that	intercepts	local	
operations	on	each	host	and	passes	them	to	a	local	agent	which	in	
turn	passes	them	to	an	event	processor	that	analyzes	the	event	and	

determines	whether	or	not	to	alert	the	admin.

LiCShield generates	AppArmor profiles	by	tracing	the	container	engine	(Docker daemon)	

during	the	build	and	the	execution	of	the	containers.

Using	
Serverless in	
the	Cloud

Lambdefy framework	to	demonstrate	the	
differing	requirements	between	applications	deployed	
to	IaaS and	applications	deployed	as	a	cloud	event,	
and	Media	Management	System	for	showing	high	

scalability	of	image	resizing	tasks	on	Lambda.

Container	
Scanners

OpenSCAP (Security	Content	Automation	Protocol)	searches	for	an	appropriate	fix	element,	
resolves	it,	prepares	the	environment,	and	executes	the	fix	script.

Docker Security	Scanning	can	scan	images	in	private	repositories	to	verify	that	they	
are	free	from	known	security	vulnerabilities	or	exposures,	and	report	the	results	of	the	scan	for	
each	image	tag

That’s	it!	Questions?

Leveraging the Serverless Architecture
for Securing Linux Containers

OpenWhisk

KubernetesVulnerability scanner
Security Enforcement Operator

