
Fast and Flexible
Containerization with Pipsqueak

Edward Oakes, Leon Yang, Kevin Houck, Tyler Harter*,
Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau

OpenLambda

* Microsoft Gray Systems Lab

Containers in the Cloud

(1) Traditional Server Containers
● Runtime & server deployed as a container
● Flexible runtime, but slow startup

(2) Serverless Computing
● Containers/customers share a host server
● Fast startup, but inflexible runtime

Containers in the Cloud

(2’) Pipsqueak - Flexible Serverless
● Secure, built-in package support
● 9-2000x speedups for single-package workloads

(1) Traditional Server Containers
● Runtime & server deployed as a container
● Flexible runtime, but slow startup

(2) Serverless Computing
● Containers/customers share a host server
● Fast startup, but inflexible runtime

Containers in the Cloud

(2’) Pipsqueak - Flexible Serverless
● Secure, built-in package support
● 9-2000x speedups for single-package workloads

(1) Traditional Server Containers
● Runtime & server deployed as a container
● Flexible runtime, but slow startup

(2) Serverless Computing
● Containers/customers share a host server
● Fast startup, but inflexible runtime

Microservices
● Applications are decoupled into modular pieces, or “services”
● Services are lightweight, making deployment and scaling less painful

Hardware

Operating System

Server & Runtime

A
1

deployment
bundles

A
2

A
N

...

Microservices
● Applications are decoupled into modular pieces, or “services”
● Services are lightweight, making deployment and scaling less painful

○ Or are they?

Hardware

Operating System

Server & Runtime

deployment
bundles

A
1

A
2

A
N

...

Microservices
● Applications are decoupled into modular pieces, or “services”
● Services are lightweight, making deployment and scaling less painful

○ Or are they?
○ Problem: developers depend on many

userspace libraries

Hardware

Operating System

Server & Runtime

deployment
bundlesA

1
A

2
A

N

sc
ip

y
n

u
m

p
y

...

m
at

p
lo

tl
ib

re
q

u
es

ts

Microservices
● Applications are decoupled into modular pieces, or “services”
● Services are lightweight, making deployment and scaling less painful

○ Or are they?
○ Problem: developers depend on many

userspace libraries

Hardware

Operating System

Server & Runtime

deployment
bundlesA

1
A

2
A

N
...

sc
ip

y
n

u
m

p
y

re
q

u
es

ts

m
at

p
lo

tl
ib

Matplotlib installation:
● 4.37s to download
● 5.24s to install
● 0.21s to import

● Applications are decoupled into modular pieces, or “services”
● Services are lightweight, making deployment and scaling less painful

○ Or are they?
○ Problem: developers depend on many

userspace libraries

Microservices MicroMonoliths

Hardware

Operating System

Server & Runtime

deployment
bundlesA

1
A

2
A

N
...

sc
ip

y
n

u
m

p
y

m
at

p
lo

tl
ib

Matplotlib installation:
● 4.37s to download
● 5.24s to install
● 0.21s to import

MicroMonolith - a conceptually
small service that is inflated by
large userspace libraries

re
q

u
es

ts

Outline
Motivation

Python Packages
● Anatomy
● Analysis

Pipsqueak
● Handler cache
● Import cache

Evaluation

Conclusion

Installation Workflow

numpy.tar.gz
requests.tar.gz
matplotlib.tar.gz

...

Download Install Import

pip mirror

Unpack archive
Run setup.py

Run __init__.py

Installation Workflow

numpy.tar.gz
requests.tar.gz
matplotlib.tar.gz

...

Download Install Import

pip mirror

Unpack archive
Run setup.py

Run __init__.py

Install

main.py
other.py
ext.c
setup.py

archive

setup.py
run

run

gcc

main.py
other.py
ext.so

unpack
install dir

Install

main.py
other.py
ext.c
setup.py

archive

setup.py
run

run

gcc

main.py
other.py
ext.so

unpack
install dir

!!!

other dir

write

Install

Installing pip packages must be considered unsafe

main.py
other.py
ext.c
setup.py

archive

setup.py
run

run

gcc

main.py
other.py
ext.so

unpack
install dir

!!!

other dir

write

Installation Workflow

numpy.tar.gz
requests.tar.gz
matplotlib.tar.gz

...

Download Install Import

pip mirror

Unpack archive
Run setup.py

Run __init__.py

Import
1. Search for the named module
2. Bind the module’s metadata to the symbol table
3. Run __init__.py for the module and its dependencies

Import
1. Search for the named module
2. Bind the module’s metadata to the symbol table
3. Run __init__.py for the module and its dependencies

Run arbitrary Python code, C code, etc

Import
1. Search for the named module
2. Bind the module’s metadata to the symbol table
3. Run __init__.py for the module and its dependencies

Run arbitrary Python code, C code, etc

Would you trust these packages?

Import
1. Search for the named module
2. Bind the module’s metadata to the symbol table
3. Run __init__.py for the module and its dependencies

Run arbitrary Python code, C code, etc

Would you trust these packages?
● “itsdangerous”
● “bugs-everywhere”
● “cocaine-tools”

Import
1. Search for the named module
2. Bind the module’s metadata to the symbol table
3. Run __init__.py for the module and its dependencies

Run arbitrary Python code, C code, etc

Importing pip packages must be considered unsafe

Would you trust these packages?
● “itsdangerous”
● “bugs-everywhere”
● “cocaine-tools”

Outline
Motivation

Python Packages
● Anatomy
● Analysis

Pipsqueak
● Handler cache
● Import cache

Evaluation

Conclusion

Analysis Questions
● What startup costs are associated with popular packages?
● How large are pip packages?

Python Package Analysis

Analysis Questions
● What startup costs are associated with popular packages?
● How large are pip packages?

Methodology
● Scraped 876K GitHub Python repositories and parsed import

statements from all included .py files
● Setup mirror of pip repository (834K total packages)

Python Package Analysis

Analysis Questions
● What startup costs are associated with popular packages?
● How large are pip packages?

Methodology
● Scraped 876K GitHub Python repositories and parsed import

statements from all included .py files
● Setup mirror of pip repository (834K total packages)

Python Package Analysis

Startup Costs

Startup Costs

Average Times:
● Download: 1.6s
● Install: 2.3s
● Import: 107ms

Analysis Questions
● What costs are associated with popular packages?
● How large are pip packages?

Methodology
● Scraped 876k GitHub Python repositories and parsed import

statements from all included .py files
● Setup mirror of pip repository (834k total packages)

Python Package Analysis

Pip Repository

Pip Repository

Average Sizes:
● Uncompressed: 1.8 MB
● Compressed: 630 KB

Motivation

Python Packages
● Anatomy
● Analysis

Pipsqueak
● Handler cache
● Import cache

Evaluation

Conclusion

Outline

Package sharing serverless compute platform
● Extension of OpenLambda
● Pre-initialize download, install, and import steps

Cache pre-initialized packages/interpreters across 3 tiers:
● Unshared memory: paused handler containers
● Shared memory: interpreter prototypes with pre-imported packages
● Shared SSD: pre-installed packages

Pipsqueak

Three Levels of Caching

Import Cache
● Reuse initialized interpreters between customers

Handler Cache
● Reuse initialized containers within a customer

Install Cache
● Reuse installed packages between customers

Small & Fast

Large & Slow

Three Levels of Caching

Import Cache
● Reuse initialized interpreters between customers

Handler Cache
● Reuse initialized containers within a customer

Install Cache
● Reuse installed packages between customers

Pipsqueak
Contribution

Small & Fast

Large & Slow

Three Levels of Caching

Import Cache
● Reuse initialized interpreters between customers

Handler Cache
● Reuse initialized containers within a customer

Small & Fast

Large & Slow

Install Cache
● Reuse installed packages between customers

Covered
Today

Motivation

Python Packages
● Anatomy
● Analysis

Pipsqueak
● Handler cache
● Import cache

Evaluation

Conclusion

Outline

Handler Cache
● Each customer’s handlers need to be sandboxed in a container, but we can

reuse containers for multiple requests
○ Keep recently used containers in a “paused” state
○ Inspired by AWS Lambda mechanism

● Simple LRU policy
○ Evict on memory pressure

Motivation

Python Packages
● Anatomy
● Analysis

Pipsqueak
● Handler cache
● Import cache

Evaluation

Conclusion

Outline

● Maintain a set of Python interpreters with packages pre-imported in a sleeping
state

Import Cache

● Maintain a set of Python interpreters with packages pre-imported in a sleeping
state

● Using a cache entry:
a. Wake up & fork a sleeping Python interpreter
b. Relocate child process into handler container
c. Handle requests

Import Cache

● Maintain a set of Python interpreters with packages pre-imported in a sleeping
state

● Using a cache entry:
a. Wake up & fork a sleeping Python interpreter
b. Relocate child process into handler container
c. Handle requests

● Creating a cache entry:
a. Wake up & fork a sleeping Python interpreter
b. Relocate child process into cache container
c. Import Python packages & sleep

Import Cache

{}

Import Cache Handler Cache

{}
H1(A)

Import Cache Handler Cache

{}
H1(A)

{A}

Import Cache Handler Cache

{}
H1(A)

H1(A)

{A}

Import Cache Handler Cache

{}
H1(A)

{A}

Import Cache Handler Cache

{}
H2(A,B)

H1(A)

{A}

Import Cache Handler Cache

{}
H2(A,B)

H1(A)

{A}

{A,B}

Import Cache Handler Cache

{}
H2(A,B)

H1(A)

{A}

{A,B}

H2(A,B)

Import Cache Handler Cache

{}
H1(A)

{A}

{A,B}

H2(A,B)

Import Cache Handler Cache

{}
H3(B)

H1(A)

{A}

{A,B}

H2(A,B)

Import Cache Handler Cache

{}
H3(B)

H1(A)

{A}

{A,B}

H2(A,B)

Import Cache Handler Cache

{}
H3(B)

H1(A)

{A}

{A,B}

H2(A,B)

What if package ‘A’ is malicious?

Import Cache Handler Cache

{}
H3(B)

H1(A)

{A}

{A,B}

H2(A,B)

What if package ‘A’ is malicious?
● “Subset only” rule

Import Cache Handler Cache

Outline
Motivation

Python Packages
● Anatomy
● Analysis

Pipsqueak
● Handler cache
● Import cache

Evaluation

Conclusion

Evaluation Questions

1. How much does package sharing improve latency?

2. How do the caching layers interact?

Microbenchmark

Not a stress test, want to examine differences in caching

Experimental Setup:
● 1 OpenLambda worker machine
● 2 random requests per second
● 100 distinct handlers, all importing the same pip package

Evaluation Questions

1. How much does package sharing improve latency?

2. How do the caching layers interact?

Microbenchmark

Evaluation Questions

1. How much does package sharing improve latency?

2. How do the caching layers interact?

Cache Interaction

Cache Interaction = numpy memory

= handler-specific memory
handler cache

working set

handler cache

numpy cache entry

Cache Interaction = numpy memory

= handler-specific memory

working set

Cache Interaction = numpy memory

= handler-specific memory
handler cache

numpy cache entry

working set

Cache Interaction = numpy memory

= handler-specific memory

Handler cache misses are:
● Rarer

handler cache

numpy cache entry

working set

Cache Interaction = numpy memory

= handler-specific memory

Handler cache misses are:
● Rarer
● Faster

handler cache

numpy cache entry

working set

Outline
Motivation

Python Packages
● Anatomy
● Analysis

Pipsqueak
● Handler cache
● Import cache

Evaluation

Conclusion

Problem:
● Lambda handlers are supposed to be small, but developers’ reliance on user-space

libraries inflates them

Our Solution:
● Share pre-initialized packages among handlers in multi-level cache

Results:
● 9-2000x speedups for single-package workloads

Conclusion

Questions?

