
Fast and Flexible 
Containerization with Pipsqueak

Edward Oakes, Leon Yang, Kevin Houck, Tyler Harter*,
Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau

OpenLambda

* Microsoft Gray Systems Lab



Containers in the Cloud

(1) Traditional Server Containers
● Runtime & server deployed as a container
● Flexible runtime, but slow startup

(2) Serverless Computing
● Containers/customers share a host server
● Fast startup, but inflexible runtime



Containers in the Cloud

(2’) Pipsqueak - Flexible Serverless
● Secure, built-in package support
● 9-2000x speedups for single-package workloads

(1) Traditional Server Containers
● Runtime & server deployed as a container
● Flexible runtime, but slow startup

(2) Serverless Computing
● Containers/customers share a host server
● Fast startup, but inflexible runtime



Containers in the Cloud

(2’) Pipsqueak - Flexible Serverless
● Secure, built-in package support
● 9-2000x speedups for single-package workloads

(1) Traditional Server Containers
● Runtime & server deployed as a container
● Flexible runtime, but slow startup

(2) Serverless Computing
● Containers/customers share a host server
● Fast startup, but inflexible runtime



Microservices
● Applications are decoupled into modular pieces, or “services”
● Services are lightweight, making deployment and scaling less painful

Hardware

Operating System

Server & Runtime

A
1

deployment 
bundles

A
2

A
N

...



Microservices
● Applications are decoupled into modular pieces, or “services”
● Services are lightweight, making deployment and scaling less painful

○ Or are they?

Hardware

Operating System

Server & Runtime

deployment 
bundles

A
1

A
2

A
N

...



Microservices 
● Applications are decoupled into modular pieces, or “services”
● Services are lightweight, making deployment and scaling less painful

○ Or are they?
○ Problem: developers depend on many 

userspace libraries

Hardware

Operating System

Server & Runtime

deployment 
bundlesA

1
A

2
A

N

sc
ip

y
n

u
m

p
y

...

m
at

p
lo

tl
ib

re
q

u
es

ts



Microservices 
● Applications are decoupled into modular pieces, or “services”
● Services are lightweight, making deployment and scaling less painful

○ Or are they?
○ Problem: developers depend on many 

userspace libraries

Hardware

Operating System

Server & Runtime

deployment 
bundlesA

1
A

2
A

N
...

sc
ip

y
n

u
m

p
y

re
q

u
es

ts

m
at

p
lo

tl
ib

Matplotlib installation:
● 4.37s to download
● 5.24s to install
● 0.21s to import



● Applications are decoupled into modular pieces, or “services”
● Services are lightweight, making deployment and scaling less painful

○ Or are they?
○ Problem: developers depend on many 

userspace libraries

Microservices  MicroMonoliths
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Matplotlib installation:
● 4.37s to download
● 5.24s to install
● 0.21s to import

MicroMonolith - a conceptually 
small service that is inflated by 
large userspace libraries
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Import
1. Search for the named module
2. Bind the module’s metadata to the symbol table
3. Run __init__.py for the module and its dependencies

Run arbitrary Python code, C code, etc

Importing pip packages must be considered unsafe

Would you trust these packages?
● “itsdangerous”
● “bugs-everywhere”
● “cocaine-tools”
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● Download: 1.6s
● Install: 2.3s
● Import: 107ms



Analysis Questions
● What costs are associated with popular packages?
● How large are pip packages?

Methodology
● Scraped 876k GitHub Python repositories and parsed import 

statements from all included .py files
● Setup mirror of pip repository (834k total packages)
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Pip Repository

Average Sizes:
● Uncompressed: 1.8 MB
● Compressed: 630 KB
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Package sharing serverless compute platform
● Extension of OpenLambda
● Pre-initialize download, install, and import steps

Cache pre-initialized packages/interpreters across 3 tiers:
● Unshared memory: paused handler containers
● Shared memory: interpreter prototypes with pre-imported packages
● Shared SSD: pre-installed packages

Pipsqueak
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Handler Cache
● Each customer’s handlers need to be sandboxed in a container, but we can 

reuse containers for multiple requests
○ Keep recently used containers in a “paused” state
○ Inspired by AWS Lambda mechanism

● Simple LRU policy
○ Evict on memory pressure
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● Maintain a set of Python interpreters with packages pre-imported in a sleeping 
state

● Using a cache entry:
a. Wake up & fork a sleeping Python interpreter
b. Relocate child process into handler container
c. Handle requests

● Creating a cache entry:
a. Wake up & fork a sleeping Python interpreter
b. Relocate child process into cache container
c. Import Python packages & sleep

Import Cache
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What if package ‘A’ is malicious?
● “Subset only” rule

Import Cache Handler Cache
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Evaluation Questions

1. How much does package sharing improve latency?

2. How do the caching layers interact?



Microbenchmark

Not a stress test, want to examine differences in caching

Experimental Setup:
● 1 OpenLambda worker machine
● 2 random requests per second
● 100 distinct handlers, all importing the same pip package
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Cache Interaction = numpy memory

= handler-specific memory

Handler cache misses are:
● Rarer
● Faster

handler cache

numpy cache entry

working set
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Problem:
● Lambda handlers are supposed to be small, but developers’ reliance on user-space 

libraries inflates them

Our Solution:
● Share pre-initialized packages among handlers in multi-level cache

Results:
● 9-2000x speedups for single-package workloads

Conclusion



Questions?


