Serverless Computing: Customer Adoption Insights & Patterns

IBM Distinguished Engineer Chief Architect, Serverless/FaaS & IBM Cloud Functions

Decreasing concern (and control) over stack implementation

Traditional model

Worry about scaling

- When to scale? (mem-, cpu-, response time-, etc. driven?)
- How fast can you scale?

Worry about resiliency & cost

- At least 2 processes for HA
- Keep them running & healthy
- Deployment in multiple regions

Charged even when idling / not 100% utilized

Continuous polling due to missing event programming model

and Idle

Serverless model

Scales inherently

One process per request

No cost overhead for resiliency

No long running process to be made HA / multi-region

Introduces event programming model

Charges only for what is used

 Only worry about code higher dev velocity, lower operational costs

FaaS platform to execute code in response to events

Apache open source project: openwhisk.org

FaaS platform to execute code in response to events

IBM Cloud Functions:
Managed service as part of the IBM Cloud
bluemix.net/openwhisk

IBM Watson and Cloud Platform

Concepts

Supported Languages

... and more to come

Support for different invocation models

Supports higher-level programming constructs

Chaining/ Sequencing

Parameter Binding

Composition, Control Flow and State Management

A Differentiated Model for FaaS Composition

- Respond to the need for more complex, coordinated flows required for end to end solutions across cloud Services
- Enable more expressive programming through direct integration of new constructs into existing language bindings

Composition	Description	Example		
task	single task	<pre>composer.task('sayHi', { input: 'userInfo' })</pre>		
dictionary	constant dictionary	<pre>composer.dictionary({ message: 'Hello World!' })</pre>		
sequence	sequence	<pre>composer.sequence('getLocation', 'getWeatherForLocation')</pre>		
let	variables	composer.let('n', 42,)		
if	conditional	<pre>composer.if('authenticate', /* then */ 'welcome', /* e 'login') if ic</pre>	•••• :c:_	
while	loop	composer.while('needMoreData', 'fetchMore	SOURCE	
try	error handling	try('DivideByN', /* catch */ 'NaN')		
repeat	repetition	repeat(42, 'sayHi')	authenticate	
retry	error recovery	retry(3, 'connect')		
retain	parameter retention	composer.retain('validateInput')	This action has not yet been deployed	
ICCATIL	retention			

Event Provider

Periodic

IBM Cloudant

Message Hub

Mobile Push

Github

IBM App Connect

Granular pricing

Pay only for the exact time your actions run. When an action is not invoked, it's not in memory, so you don't pay anything.

Reduce Costs

Time an action was running
* memory allocated to action

\$ 0.000017 per GBs Free tier: 400000 GBs

OpenWhisk allows you to build up an entirely serverless application architecture

Customers and Partners

Mobile backend

Outsource compute-intensive tasks to a powerful & scalable serverless platform and implement your actions even without changing the programming language.

Mobile backend

The Weather Gods

https://itunes.apple.com/us/app/weather-gods/id1041512978?mt=8

Data processing

Data processing

Ideally suited for working with multimedia data like audio, image and video data:

Audio normalization Image rotation, sharpening, noise reduction or

Thumbnail generation Image OCR'ing Video transcoding

Data processing

http://ecc.ibm.com/casestudy/us-en/ECCF-CDC12387USEN

10x faster 90% less cost

Sequence
Trigger
Action

Data processing

Less cost <\$2 for all paper checks processed within 1 year

Cognitive

Skylink

https://github.com/IBM-Bluemix/skylink

Abilisense

https://www.abilisense.com/

Abilisense

Assumptions				
Home Devices	1.000	Un.		
Avg. Sound File Size	1	MB		
Avg. Number of Sound Readings	10	Monthly		
IoT Reading Frequency	1	Hourly		
IoT Recording Data Size	2	KB		
Weather Data Reading Frequency	1	Hourly		
Weather Data Reading Size	2	KB		
Weather Data Total Capability	1.41	MB		

Assumptions			
Runtime Action per Millisecond	5		
Memory MB	512		
Number of Executions	5,000,000.00		
Monthly Cost	\$14.45		

Potential research areas

- Problem determination for apps with a large number of actions
- Latency reduction
- Density increase
- State handling
- Building complex apps

•

Learn more

Commercial offering home: bluemix.net/openwhisk

Open-source offering home: openwhisk.org

Slack: slack.openwhisk.org

Learn

Github github.com/openwhisk

Twitter twitter.com/openwhisk

Medium medium.com/openwhisk

Slideshare slideshare.net/OpenWhisk

Youtube

youtube.com/channel/UCbzgShnQk8 F43NKsvEYA1SA

Thank you