Using a serverless framework
for implementing a cognitive
tutor: experiences and issues

By: Nirmal K Mukhi, Srijith Prabhu, Bruce Slawson



Roadmap

Background of our application

Why we chose a serverless architecture
Design decisions

Problems we faced and how we solved them

A

What we have yet to try



Background of application

Tutor User Interface / Other Clients

Watson Tutor API

Orchestration

N

Stateless microservices

a—-"""f/

VN T

Spell Checker Response Analyzer [} | Feedback

4 Il I

Next Best Action || Hint Generator | | Question Recommender ']
... (others TBD) | Learner Model || Watson Conversation 'I
I] [I L -

Figure 1: Watson Tutor Architecture

Authentication Manager
L
1

Data Service m

II =
o 4/____ >~ —
“Long term data-| | Transient /
in cloud db ~ edge data |
::»Long _term_data--:}
in cloud
filesystem



Background cont.

e Tutoring application that converses with the student.

 Composed of 3 major actions:
 startSession — sets up the initial configuration for the conversation.
e converse — does the majority of work with interacting with the student.
* endSession — returns analytics for the session.



Why choose serverless?

* Good for small and large workloads
* The code for the component was lightweight.

* The flow of the program was mostly calling APIs in sequence and
using conditionals to figure out which APIs to call.

* The component didn’t store any information in memory.
* No overhead to maintain REST API.



Example flows

Authentication

Session

Y

Configuration

Y

Session Initialization

Post Processing «— Transcript

«— Conversation Initialization

Figure 2: Start Session sequence

Authentication Session

Y

Configuration

A4

Turn Initialization

Transcript

A

Question Retrieval

A

Answer handling

Figure 3: Converse sequence

Authentication

Session

v

Configuration

Figure 4: End Session sequence



Approaches

* Disclaimer: some design choices were based on what was available at
the time and the speed at which we wanted to create the actions.

* Small granular actions used in a sequence of conditionals for the
major action.

* Small to medium sized actions used mostly in sequence.



Small granular actions

* Pros:
* Reusable
* Readable
» Testable

e Cons:

* Sequence might become more complex and might outweigh the benefits
from this approach.

* Mostly unable to call services in parallel.



Small to medium sized actions

* Pros:
* Sequence is simpler.

* Create reusable actions for the components in the sequence that are the
same for all major actions.

* Still able to write unit tests for the actions.
e Could add some parallel calls to services.

* Cons:
e Some actions are less readable and reusable.



Problems we faced

* CORS

* Our app needed to allow for credentials to be passed between client and
“server”.

* AP| Gateway didn’t support our use case, since it used wildcards in the CORS
header.

e SOLVED: created a utility to produce the proper headers.

* Spin up time
* Spin up of individual actions added up in the sequence with small workloads.
* Load testing covered this up for the most part.
* Combined the sequences into large actions.



Things we have yet to try

* Improve efficiency
* Use small one file actions and orchestrate using Composer.



Questions?



