
Using	a	serverless framework	
for	implementing	a	cognitive	
tutor:	experiences	and	issues

By:	Nirmal K	Mukhi,	Srijith	Prabhu,	Bruce	Slawson



Roadmap

1. Background	of	our	application
2. Why	we	chose	a	serverless architecture
3. Design	decisions
4. Problems	we	faced	and	how	we	solved	them
5. What	we	have	yet	to	try



Background	of	application



Background	cont.

• Tutoring	application	that	converses	with	the	student.
• Composed	of	3	major	actions:
• startSession – sets	up	the	initial	configuration	for	the	conversation.
• converse	– does	the	majority	of	work	with	interacting	with	the	student.
• endSession – returns	analytics	for	the	session.



Why	choose	serverless?

• Good	for	small	and	large	workloads
• The	code	for	the	component	was	lightweight.
• The	flow	of	the	program	was	mostly	calling	APIs	in	sequence	and	
using	conditionals	to	figure	out	which	APIs	to	call.
• The	component	didn’t	store	any	information	in	memory.
• No	overhead	to	maintain	REST	API.



Example	flows



Approaches

• Disclaimer:	some	design	choices	were	based	on	what	was	available	at	
the	time	and	the	speed	at	which	we	wanted	to	create	the	actions.
• Small	granular	actions	used	in	a	sequence	of	conditionals	for	the	
major	action.
• Small	to	medium	sized	actions	used	mostly	in	sequence.



Small	granular	actions

• Pros:
• Reusable
• Readable
• Testable

• Cons:
• Sequence	might	become	more	complex	and	might	outweigh	the	benefits	
from	this	approach.
• Mostly	unable	to	call	services	in	parallel.



Small	to	medium	sized	actions

• Pros:
• Sequence	is	simpler.
• Create	reusable	actions	for	the	components	in	the	sequence	that	are	the	
same	for	all	major	actions.
• Still	able	to	write	unit	tests	for	the	actions.
• Could	add	some	parallel	calls	to	services.

• Cons:
• Some	actions	are	less	readable	and	reusable.



Problems	we	faced

• CORS
• Our	app	needed	to	allow	for	credentials	to	be	passed	between	client	and	
“server”.
• API	Gateway	didn’t	support	our	use	case,	since	it	used	wildcards	in	the	CORS	
header.
• SOLVED:	created	a	utility	to	produce	the	proper	headers.

• Spin	up	time
• Spin	up	of	individual	actions	added	up	in	the	sequence	with	small	workloads.
• Load	testing	covered	this	up	for	the	most	part.
• Combined	the	sequences	into	large	actions.



Things	we	have	yet	to	try

• Improve	efficiency
• Use	small	one	file	actions	and	orchestrate	using	Composer.



Questions?


