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Background of application
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Background cont.

e Tutoring application that converses with the student.

 Composed of 3 major actions:
 startSession — sets up the initial configuration for the conversation.
e converse — does the majority of work with interacting with the student.
* endSession — returns analytics for the session.



Why choose serverless?

* Good for small and large workloads
* The code for the component was lightweight.

* The flow of the program was mostly calling APIs in sequence and
using conditionals to figure out which APIs to call.

* The component didn’t store any information in memory.
* No overhead to maintain REST API.



Example flows
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Approaches

* Disclaimer: some design choices were based on what was available at
the time and the speed at which we wanted to create the actions.

* Small granular actions used in a sequence of conditionals for the
major action.

* Small to medium sized actions used mostly in sequence.



Small granular actions

* Pros:
* Reusable
* Readable
» Testable

e Cons:

* Sequence might become more complex and might outweigh the benefits
from this approach.

* Mostly unable to call services in parallel.



Small to medium sized actions

* Pros:
* Sequence is simpler.

* Create reusable actions for the components in the sequence that are the
same for all major actions.

* Still able to write unit tests for the actions.
e Could add some parallel calls to services.

* Cons:
e Some actions are less readable and reusable.



Problems we faced

* CORS

* Our app needed to allow for credentials to be passed between client and
“server”.

* AP| Gateway didn’t support our use case, since it used wildcards in the CORS
header.

e SOLVED: created a utility to produce the proper headers.

* Spin up time
* Spin up of individual actions added up in the sequence with small workloads.
* Load testing covered this up for the most part.
* Combined the sequences into large actions.



Things we have yet to try

* Improve efficiency
* Use small one file actions and orchestrate using Composer.



Questions?



