
How Microservices and Serverless Computing
Enable the Next Gen of Machine Intelligence

Jon Peck

Making state-of-the-art algorithms
discoverable and accessible to everyone

Full-Spectrum Developer & Advocate

jpeck@algorithmia.com
@peckjon

Algorithmia.com

2

The Problem: ML is in a huge growth phase,

difficult/expensive for DevOps to keep up

Initially:

● A few models, a couple frameworks, 1-2 languages
● Dedicated hardware or VM Hosting
● IT Team for DevOps

● High time-to-deploy, manual discoverability
● Few end-users, heterogenous APIs (if any)

Pretty soon...
● > 5,000 algorithms (50k versions) on many runtimes / frameworks

● > 60k algorithm developers: heterogenous, largely unpredictable
● Each algorithm: 1 to 1,000 calls/second, a lot of variance

● Need auto-deploy, discoverability, low (15ms) latency
● Common API, composability, fine-grained security

3

The Need: an “Operating System for AI”
AI/ML scalable infrastructure on demand + marketplace

● Function-as-a-service for Machine & Deep Learning

● Discoverable, live inventory of AI via APIs

● Anyone can contribute & use

● Composable, Monetizable

● Every developer on earth can make their app intelligent

An Operating System for AI
What did the evolution of OS look like?

iOS/Android
Built-in App Store
(Discoverability)

Punch Cards
1970s

Unix
Multi-tenancy, Composability

DOS
Hardware Abstraction

GUI (Win/Mac)
Accessibility

4

General-purpose computing had a long evolution, as we learned what the common
problems were / what abstractions to build. AI is in the earlier stages of that evolution.

An Operating System:

• Provides common functionality needed by many programs
• Standardizes conventions to make systems easier to work with
• Presents a higher level abstraction of the underlying hardware

Use Case
Jian Yang made an app to recognize food “SeeFood”

© H BO A ll R ights R eserved 5

Use Case
He deployed his trained model to a GPU-enabled server

GPU-enabled
Server

?

6

Use Case
The app is a hit!

SeeFood
P ro d u c t iv i ty

7

?
?

Use Case
… and now his server is overloaded.

GPU-enabled
Server

?

xN

8

• Two distinct phases: training and inference

• Lots of processing power

• Heterogenous hardware (CPU, GPU, FPGA, TPU, etc.)

• Limited by compute rather than bandwidth

• “Tensorflow is open source, scaling it is not.”

Characteristics of AI

9

10

TRAINING

Long com pute cycle

Fixed load (Inelastic)

Statefu l

OWNER: Data Scientists

Single user

TRAINING

11

Long com pute cycle

Fixed load (Inelastic)

Statefu l

OWNER: Data Scientists

Single user

Analogous to dev tool chain.
Building and iterating over a

model is similar to building an
app.

Metal or VM

12

INFERENCE

Short com pute bursts

OWNER: DevOps

TRAINING

Long com pute cycle

Fixed load (Inelastic)

Statefu l

OWNER: Data Scientists

M ultip le usersSingle user

State less

Elastic

Analogous to dev tool chain.
Building and iterating over a

model is similar to building an
app.

Metal or VM

13

INFERENCE

Short com pute bursts

OWNER: DevOps

TRAINING

Long com pute cycle

Fixed load (Inelastic)

Statefu l

OWNER: Data Scientists

M ultip le usersSingle user

State less

Elastic

Analogous to an OS.
Running concurrent models

requires task scheduling.

Analogous to dev tool chain.
Building and iterating over a

model is similar to building an
app.

Metal or VM

14

INFERENCE

Short com pute bursts

OWNER: DevOps

TRAINING

Long com pute cycle

Fixed load (Inelastic)

Statefu l

OWNER: Data Scientists

M ultip le usersSingle user

State less

Elastic

Containers

Analogous to an OS.
Running concurrent models

requires task scheduling.

Analogous to dev tool chain.
Building and iterating over a

model is similar to building an
app.

Metal or VM

15

INFERENCE

Short com pute bursts

OWNER: DevOps

TRAINING

Long com pute cycle

Fixed load (Inelastic)

Statefu l

OWNER: Data Scientists

M ultip le usersSingle user

State less

Elastic

Containers Kubernetes

Analogous to an OS.
Running concurrent models

requires task scheduling.

Analogous to dev tool chain.
Building and iterating over a

model is similar to building an
app.

Metal or VM

16

INFERENCE

Short com pute bursts

State less

Elastic

M ultip le users

Containers Kubernetes

OWNER: DevOps

TRAINING

Long com pute cycle

Fixed load (Inelastic)

Statefu l

S ingle user

OWNER: Data Scientists

Analogous to an OS.
Running concurrent models

requires task scheduling.

Analogous to dev tool chain.
Building and iterating over a

model is similar to building an
app.

Metal or VM

MICROSERVICES: the design of a system as
independently deployable, loosely coupled
services.

Microservices & Serverless Computing => ML Hosting

ADVANTAGES

• Maintainable, Scalable
• Software & Hardware Agnostic
• Rolling deployments

SERVERLESS: the encapsulation, starting, and
stopping of singular functions per request, with a
just-in-time-compute model.

ADVANTAGES

• Elasticity, Cost Efficiency
• Concurrency
• Improved Latency

+ +
17

Why Serverless - Cost Efficiency
C

al
ls

 p
er

 S
ec

on
d

Max calls/s

Avg calls/s

40

35

30

25

20

15

10

5

G
P

U
 S

er
ve

r
In

st
an

ce
s

12
AM

02
AM

04
AM

06
AM

08
AM

10
AM

12
PM

02
PM

04
PM

06
PM

08
PM

10
PM

160

140

120

100

80

60

40

20

Jian Yang’s “SeeFood” is most active during lunchtime.

18

Traditional Architecture - Design for Maximum
C

al
ls

 p
er

 S
ec

on
d

Max calls/s

Avg calls/s

40

35

30

25

20

15

10

5

12
AM

02
AM

04
AM

06
AM

08
AM

10
AM

12
PM

02
PM

04
PM

06
PM

08
PM

10
PM

40 machines 24 hours. $648 * 40 = $25,920 per month

G
P

U
 S

er
ve

r
In

st
an

ce
s

160

140

120

100

80

60

40

20

19

Autoscale Architecture - Design for Local Maximum
C

al
ls

 p
er

 S
ec

on
d

Max calls/s

Avg calls/s

40

35

30

25

20

15

10

5

12
AM

02
AM

04
AM

06
AM

08
AM

10
AM

12
PM

02
PM

04
PM

06
PM

08
PM

10
PM

19 machines 24 hours. $648 * 40 = $12,312 per month

G
P

U
 S

er
ve

r
In

st
an

ce
s

160

140

120

100

80

60

40

20

20

Serverless Architecture - Design for Minimum
C

al
ls

 p
er

 S
ec

on
d

Max calls/s

Avg calls/s

40

35

30

25

20

15

10

5

12
AM

02
AM

04
AM

06
AM

08
AM

10
AM

12
PM

02
PM

04
PM

06
PM

08
PM

10
PM

Avg. of 21 calls / sec, or equivalent of 6 machines. $648 * 6 = $3,888 per month

160

140

120

100

80

60

40

20

G
P

U
 S

er
ve

r
In

st
an

ce
s

21

?
?

Why Serverless - Concurrency

GPU-enabled
Servers

?

L
o

a
d

 B
a

la
n

c
e

r

22

Why Serverless - Improved Latency
Portability = Low Latency

23

24

+ +

Almost there! We also need:

GPU Memory Management, Job Scheduling, Cloud Abstraction,

Discoverability, Authentication, Logging, etc.

25

Elastic Scale

User

Web Load Balancer

API Load Balancer

Web Servers

API Servers

Cloud Region #1

Worker xN

D o c k e r (a lg o r i th m # 1)

. .

D o c k e r (a lg o r i th m # n)

Cloud Region #2

Worker xN

D o c k e r (a lg o r i th m # 1)

. .

D o c k e r (a lg o r i th m # n)

26

Elastic Scaling with

Intelligent Orchestration

Knowing that:

● Algorithm A always calls Algorithm B
● Algorithm A consumes X CPU, X Memory, etc
● Algorithm B consumes X CPU, X Memory, etc

Therefore we can slot them in a way that:

● Reduce network latency
● Increase cluster utilization
● Build dependency graphs

FoodClassifier

FruitClassifier VeggieClassifier

Runtime Abstraction

27

Composability

Composability is critical for AI workflows because of data

processing pipelines and ensembles.

Fruit or Veggie
Classifier

Fruit
Classifier

Veggie
Classifiercat file.csv | grep foo | wc -l

28

Cloud Abstraction - Storage

No storage abstraction

s3 = boto3.client("s3")

obj = s3.get_object(Bucket="bucket-name", Key="records.csv")

data = obj["Body"].read()

With storage abstraction

data = client.file("blob://records.csv").get()

s3://foo/bar

blob://foo/bar

hdfs://foo/bar
dropbox://foo/bar

etc.

29

Compute EC2 CE VM Nova

Autoscaling Autoscaling Group Autoscaler Scale Set Heat Scaling Policy

Load Balancing
Elastic Load

Balancer
Load Balancer Load Balancer LBaaS

Remote Storage Elastic Block Store Persistent Disk File Storage Block Storage

Partial Source: Sam Ghods, KubeConf 2016

Cloud Abstraction

30

Runtime Abstraction

Support any
program m ing language
or fram ew ork, includ ing
interoperability betw een
m ixed stacks.

Elastic Scale

Prioritize and
autom atically optim ize
execution of concurrent
short-lived jobs.

Cloud Abstraction

Provide portab ility to
algorithm s, includ ing
public clouds or private
clouds.

Discoverability, Authentication, Instrumentation, etc.

Shell & Services

Kernel

An Operating System for AI: the “AI Layer”

31

Discoverability: an App Store for AI

32

Algorithmia’s OS for AI: discover a model

1. Discover a model

● AppStore-like interface

● Categorized, tagged, rated

● Well-described

(purpose, source, API)

33

Algorithmia’s OS for AI: execute a model

2. Execute from any language

● Raw JSON, or lang stubs

● Common syntax

● Autoscaled elastic cloud-exec

● Secure, isolated

● Concurrent, orchestrated

● 15ms overhead

● Hardware agnostic

34

Algorithmia’s OS for AI: add a model

3. Add new models

● Many languages, frameworks

● Instant JSON API

● Call other models seamlessly

(regardless of lang)

● Granular permissions

● GPU environments

● Namespaces & versioning

Jon Peck Developer Advocate

Thank you!
FREE STUFF

$50 free at Algorithmia.com
signup code: WOSC18

jpeck@algorithmia.com
@peckjon

Algorithmia.com WE ARE HIRING

algorithmia.com/jobs
● Seattle or Remote
● Bright, collaborative env
● Unlimited PTO
● Dog-friendly

http://algorithmia.com/jobs

