rRobotl

Challenges for Serverless Native
Cloud Applications

Third International Workshop on
Serverless Computing

Ben Kehoe

Cloud Robotics Research Scientist
AWS Community Hero

@ben11kehoe
2018-07-02

About me

* Cloud robotics: Connecting robots to
the internet to help them do more and
better things

* Cloud Robotics Research Scientist at
iIRobot (since Feb 2015)

* PhD in Mechanical Engineering from
UC Berkeley, Dec 2014

- “Brass”

ab

Z
- zcﬁu‘m@‘yﬁm'\ @.'E.i‘
@mmmmmmmmmmmmmm

Roomba® 690 Roomba® 820 Roomba® 960 Roomba® 980

Then Now

Future

Why serverless?

The reasons for serverless

What: Why:

 Service-full + ephemeral compute Lower cost
* Not always F, not always aaS

* Resources billed — resources used
« Smaller, more abstract control plane

 Lower operations burden
* Faster time to market
* Focus on business value

Serverless architecture

* Call graph — component graph

* Distributed system thinking

* Traditionally occurs at system
boundaries

e Serverless: must be treated
systematically

* Build robust-by-design systems

Before serverless
aka the dark ages

def foo (input) :

quux = bar (1nput.baz)

internalState.quux = quux

def bar (input) :
do work
return result

EC2

Lambda functions

def handler (event, context) :
do work

return result

def handler (event, context):
quux = Lambda.Invoke (

'bar',

event['baz'])
DynamoDB. PutItem (

"quux',

quux)

ExternalState

DynamoDB

AWS loT operations

Create Shadow Permissions

Z\g

Dead Letter Queue

I

AWS
loT

API| Gateway

Robots to
Register Queue

Iregister
Reader

"

Logging Lifecycle event

© @

Deployment

S
Deployment

» Red/black imposes requirements on
clients

* Blue/green is the direction providers are
headed

* Existing paradigm:
* Blue/green controller is part of your
component graph
» Update component graph in-place
» Controller manages roll-out

API

Function

Function
version

API

Function
router

API .
router AP| Function

Function
router

$L

API

router AP Function
Version version

Function/code versions must be first-class citizens in infrastructure

- @

Function Role Policy

O—)O—)O

Function

Continuity of
role may be
necessary

v1
v1
both
both

V2
v2
both
both

allow
deny
allow
deny

allow
deny
allow
deny

Function

v1
v
both
both

v
v2
both
both

V2
V2
both
both

allow
deny
allow
deny

allow
allow
allow

deny

allow
deny
allow
deny

Summing up

* Red/black is actually pretty easy for
serverless, but harder on the service
consumers

* Blue/green component graph gets
complicated

* Existing deployment tools don't
represent intermediate states

 Native support for blue/green
component graphs is critical

Questions?
rRobot

