
1

Challenges for Serverless Native
Cloud Applications
Third International Workshop on
Serverless Computing

Ben Kehoe

Cloud Robotics Research Scientist
AWS Community Hero
@ben11kehoe

2018-07-02

2

• Cloud robotics: Connecting robots to

the internet to help them do more and

better things

• Cloud Robotics Research Scientist at

iRobot (since Feb 2015)

• PhD in Mechanical Engineering from

UC Berkeley, Dec 2014

• “Brass”

About me

3

2015

4

5

Then Now

6

Then Now Future

7

8

Why serverless?

9

What:
•Service-full + ephemeral compute
• Not always F, not always aaS

•Resources billed → resources used
•Smaller, more abstract control plane

Why:
•Lower cost
•Lower operations burden
•Faster time to market
•Focus on business value

The reasons for serverless

10

•Call graph → component graph
•Distributed system thinking
• Traditionally occurs at system
boundaries

• Serverless: must be treated
systematically

•Build robust-by-design systems

Serverless architecture

11

def foo(input):
quux = bar(input.baz)
internalState.quux = quux

def bar(input):
do work
return result

Before serverless
aka the dark ages

EC2

12

def handler(event, context):
quux = Lambda.Invoke(

'bar',
event['baz'])

DynamoDB.PutItem(
'quux',
quux)

def handler(event, context):
do work
return result

Foo

ExternalState

Bar

DynamoDB

Lambda functions

13

/register Check
Cert

Robots to
Register Queue

Reader

Logging Lifecycle event

PermissionsCreate Shadow
Dead Letter Queue

AWS
IoT

API Gateway

Q
ue

ue
s

AWS IoT operations

14

Deployment

15

16

• Red/black imposes requirements on
clients

• Blue/green is the direction providers are
headed

• Existing paradigm:
• Blue/green controller is part of your

component graph
• Update component graph in-place
• Controller manages roll-out

Deployment

17

API

Function

18

v1

Function
version

v2

Function
router

API

19

API
router

v1

Function
version

v2

Function
router

API
version

v1

v2

20

API
router

v1

Function
version

v2

API
version

v1

v2

Function/code versions must be first-class citizens in infrastructure

21

C1

A

B C2

A

BC1 C2

A

B

22

D E1

A

D E2

A

D E1

A

E2

???

23

D E1

A

D E2

A

D E1

A

E2

A

24

Function Role Policy

25

v1 v1

Function

Role

Policy

v2 v2

Continuity of
role may be
necessary

v1 allow
v1 deny
both allow
both deny

v2 allow
v2 deny
both allow
both deny

?
?
?

26

v1 v1

Function Role Policy

v1

v2 v2

v2

v1 allow
v1 deny
both allow
both deny

v2 allow
v2 deny
both allow
both deny

v1 allow
v2 allow
both allow
both deny

27

Summing up

• Red/black is actually pretty easy for
serverless, but harder on the service
consumers

• Blue/green component graph gets
complicated

• Existing deployment tools don’t
represent intermediate states

• Native support for blue/green
component graphs is critical

Questions?

