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High Performance Computing (HPC)

Expensive capital outlay
High speed interconnect

Speed is #1 job
Older technology stack

Machine Learning

Focus on deep method
Everything is streaming
Does this really work?

"It’s easier to train a deep neural 
bidirectional LSTM with attention 
than it is to compute the SVD of a 

large matrix” - Chris Re
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Compute

O(n3)
Communication

O(n2)>

Matrix-Matrix product
Singular Value Decomposition

Least Squares Solve
Cholesky Factorization

 

Linear algebra operations have
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• More storage -> bigger

• Elastic parallelism — be careful with compute
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• Usable by anyone who 
knows Numpy

• All big matrices live 
transparently in S3

• All intermediate state is 
retained

Execution Framework
 pywren

Low Level IR aimed at LA primitives 
lambdapack

user facing numpy/matlab-like interface
numpywren
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1. Compute Cholesky Factorization LLT=A
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End to end 
runtimeEfficiency

How long did it take
to get an answer 

How efficiently did I use  
my resources
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NumPyWren
• Serverless linear algebra is possible, 

performant, elastic, and easy

• Releasing code this month
• Next steps: Op fusion, straggler mitigation, 

even higher-level interfaces
• Questions? 

Eric Jonas
jonas@eecs.berkeley.edu  
@stochastician



DISCUSSION SLIDE
• What additional services need to be truly elastic to make 

these sorts of applications possible? 

• How much control do we want/need over queues, timing, 
latency, etc? 

• What is the equilibrium price for serverless architectures? 

• How can we expand this as a development platform for 
others

 30


