
NumPyWren
Storage-enabled Scaling of
Serverless Supercomputing

Eric Jonas
Postdoctoral Researcher
jonas@eecs.berkeley.edu  
@stochasticianShivaram

Venkataraman
Ben

Recht
Ion

Stoica

Qifan PuVaishaal Shankar Karl Krauth

Jonathan  
Ragan-Kelly

Berkeley Center for  
Computational Imaging

©2017 RISELab

PyWren: Scale For Everyone

�2

Not just computer scientists

©2017 RISELab

PyWren: Scale For Everyone

�2

Not just computer scientists

Neuroscientists

©2017 RISELab

PyWren: Scale For Everyone

�2

Not just computer scientists

Neuroscientists Microscopy and Optics

©2017 RISELab

PyWren: Scale For Everyone

�2

Not just computer scientists

Neuroscientists Microscopy and Optics Geophysicists

©2017 RISELab

PyWren: Scale For Everyone

�2

Not just computer scientists

Neuroscientists

Astronomers

Microscopy and Optics Geophysicists

©2017 RISELab

PyWren: Scale For Everyone

�2

Not just computer scientists

Neuroscientists

Astronomers

Microscopy and Optics

Finance and Credit

Geophysicists

©2017 RISELab

PyWren: Scale For Everyone

�2

Not just computer scientists

Neuroscientists

Astronomers

Microscopy and Optics

Finance and Credit

Geophysicists

Developmental Economists

AWS Dev Day

 3

map(function, data)
and… that’s mostly it

 4

map(function, data)
and… that’s mostly it

def myfunc(x):
 return x + 1

 4

map(function, data)
and… that’s mostly it

def myfunc(x):
 return x + 1

futures = pwex.map(myfunc, [1, 2, 3])

 4

map(function, data)
and… that’s mostly it

def myfunc(x):
 return x + 1

futures = pwex.map(myfunc, [1, 2, 3])

print pywren.get_all_results(futures)

 4

map(function, data)
and… that’s mostly it

def myfunc(x):
 return x + 1

futures = pwex.map(myfunc, [1, 2, 3])

print pywren.get_all_results(futures)

[2, 3, 4]
 4

map(function, data)
and… that’s mostly it

def myfunc(x):
 return x + 1

futures = pwex.map(myfunc, [1, 2, 3])

print pywren.get_all_results(futures)

[2, 3, 4]
 4

Beyond
map?

 5

MOTIVATING LINEAR ALGEBRA

 6

MOTIVATING LINEAR ALGEBRA

 6

High Performance Computing (HPC)

MOTIVATING LINEAR ALGEBRA

 6

High Performance Computing (HPC)

Expensive capital outlay
High speed interconnect

Speed is #1 job
Older technology stack

MOTIVATING LINEAR ALGEBRA

 6

High Performance Computing (HPC)

Expensive capital outlay
High speed interconnect

Speed is #1 job
Older technology stack

Machine Learning

MOTIVATING LINEAR ALGEBRA

 6

High Performance Computing (HPC)

Expensive capital outlay
High speed interconnect

Speed is #1 job
Older technology stack

Machine Learning

Focus on deep method
Everything is streaming
Does this really work?

MOTIVATING LINEAR ALGEBRA

 6

High Performance Computing (HPC)

Expensive capital outlay
High speed interconnect

Speed is #1 job
Older technology stack

Machine Learning

Focus on deep method
Everything is streaming
Does this really work?

"It’s easier to train a deep neural
bidirectional LSTM with attention
than it is to compute the SVD of a

large matrix” - Chris Re

TRENDS AND OBSERVATIONS

 7

Compute more
precious

Fast cheap
disaggregated

state

Algorithms with
dynamic

parallelism

Operations
where compute
dominates IO
O(n3)

O(n2)
>

NO MOORE FREE LUNCH

Hennessy, John L., and David A. Patterson. Computer architecture: a quantitative approach. 6th ed, 2017

NO MOORE FREE LUNCH

Hennessy, John L., and David A. Patterson. Computer architecture: a quantitative approach. 6th ed, 2017

NO MOORE FREE LUNCH

Hennessy, John L., and David A. Patterson. Computer architecture: a quantitative approach. 6th ed, 2017

DATA CENTER DISAGGREGATION
Co

st
to

 st
or

e
1 T

B

 9

DATA CENTER DISAGGREGATION

0

1.75

3.5

5.25

7

Co
st

to
 st

or
e

1 T
B

 9

DATA CENTER DISAGGREGATION

0

1.75

3.5

5.25

7

x1e.8xlarge

AWS Instance

Co
st

to
 st

or
e

1 T
B

 9

DATA CENTER DISAGGREGATION

0

1.75

3.5

5.25

7
$6.67/hr

x1e.8xlarge

AWS Instance

Co
st

to
 st

or
e

1 T
B

 9

DATA CENTER DISAGGREGATION

0

1.75

3.5

5.25

7
$6.67/hr

x1e.8xlarge

AWS Instance
AWS S3

Co
st

to
 st

or
e

1 T
B

 9

DATA CENTER DISAGGREGATION

0

1.75

3.5

5.25

7
$6.67/hr

x1e.8xlarge

AWS Instance
AWS S3

Co
st

to
 st

or
e

1 T
B

$0.04/hr

 9

DATA CENTER DISAGGREGATION

0

1.75

3.5

5.25

7
$6.67/hr

x1e.8xlarge

AWS Instance
AWS S3

Co
st

to
 st

or
e

1 T
B

$0.04/hr

 9

S3 throughput
per lambda

DATA CENTER DISAGGREGATION

0

1.75

3.5

5.25

7
$6.67/hr

x1e.8xlarge

AWS Instance
AWS S3

Co
st

to
 st

or
e

1 T
B

$0.04/hr

 9

S3 throughput
per lambda

S3 throughput
in total

DYNAMIC PARALLELISM AND
WORKING SET SIZE

Linear algebra operations have

 11

Linear algebra operations have

 11

Compute

O(n3)

Linear algebra operations have

 11

Compute

O(n3)
Communication

O(n2)>

Linear algebra operations have

 11

Compute

O(n3)
Communication

O(n2)>

Matrix-Matrix product
Singular Value Decomposition

Least Squares Solve
Cholesky Factorization

Linear algebra operations have

TRENDS AND OBSERVATIONS

 12

Compute more
precious

Fast cheap
disaggregated

state

Algorithms with
dynamic

parallelism

Operations
where compute
dominates IO
O(n3)

O(n2)
>

NUMPYWREN GOALS

 13

NUMPYWREN GOALS
• No expensive setup (ala PyWren)

 13

NUMPYWREN GOALS
• No expensive setup (ala PyWren)

• Decouple computation and storage

 13

NUMPYWREN GOALS
• No expensive setup (ala PyWren)

• Decouple computation and storage

• More cores->faster

 13

NUMPYWREN GOALS
• No expensive setup (ala PyWren)

• Decouple computation and storage

• More cores->faster

• More storage -> bigger

 13

NUMPYWREN GOALS
• No expensive setup (ala PyWren)

• Decouple computation and storage

• More cores->faster

• More storage -> bigger

• Elastic parallelism — be careful with compute

 13

NUMPYWREN GOALS

 13

Execution Framework
 pywren

Low Level IR aimed at LA primitives
lambdapack

user facing numpy/matlab-like interface
numpywren

NUMPYWREN GOALS

 13

• Usable by anyone who
knows Numpy

Execution Framework
 pywren

Low Level IR aimed at LA primitives
lambdapack

user facing numpy/matlab-like interface
numpywren

NUMPYWREN GOALS

 13

• Usable by anyone who
knows Numpy

• All big matrices live
transparently in S3

Execution Framework
 pywren

Low Level IR aimed at LA primitives
lambdapack

user facing numpy/matlab-like interface
numpywren

NUMPYWREN GOALS

 13

• Usable by anyone who
knows Numpy

• All big matrices live
transparently in S3

• All intermediate state is
retained

Execution Framework
 pywren

Low Level IR aimed at LA primitives
lambdapack

user facing numpy/matlab-like interface
numpywren

NEAREST NEIGHBOR

 14

NEAREST NEIGHBOR

 14

def nearest_neighbor_numpywren(X_train, X_test, y_train, y_test):

NEAREST NEIGHBOR

 14

def nearest_neighbor_numpywren(X_train, X_test, y_train, y_test):
 npwex = npywren.default_executor() 

NEAREST NEIGHBOR

 14

def nearest_neighbor_numpywren(X_train, X_test, y_train, y_test):
 npwex = npywren.default_executor() 

 X_train_sharded = npwex.matrix_init(X_train)

NEAREST NEIGHBOR

 14

def nearest_neighbor_numpywren(X_train, X_test, y_train, y_test):
 npwex = npywren.default_executor() 

 X_train_sharded = npwex.matrix_init(X_train)
 X_test_sharded = npwex.matrix_init(X_test) 

NEAREST NEIGHBOR

 14

def nearest_neighbor_numpywren(X_train, X_test, y_train, y_test):
 npwex = npywren.default_executor() 

 X_train_sharded = npwex.matrix_init(X_train)
 X_test_sharded = npwex.matrix_init(X_test) 

 XYT = npwex.dot(X_train_sharded, X_test_sharded.T)

NEAREST NEIGHBOR

 14

def nearest_neighbor_numpywren(X_train, X_test, y_train, y_test):
 npwex = npywren.default_executor() 

 X_train_sharded = npwex.matrix_init(X_train)
 X_test_sharded = npwex.matrix_init(X_test) 

 XYT = npwex.dot(X_train_sharded, X_test_sharded.T)
 XYT *= -2

NEAREST NEIGHBOR

 14

def nearest_neighbor_numpywren(X_train, X_test, y_train, y_test):
 npwex = npywren.default_executor() 

 X_train_sharded = npwex.matrix_init(X_train)
 X_test_sharded = npwex.matrix_init(X_test) 

 XYT = npwex.dot(X_train_sharded, X_test_sharded.T)
 XYT *= -2
 norms_train = npwex.linalg.norm(X_train, axis=1)

NEAREST NEIGHBOR

 14

def nearest_neighbor_numpywren(X_train, X_test, y_train, y_test):
 npwex = npywren.default_executor() 

 X_train_sharded = npwex.matrix_init(X_train)
 X_test_sharded = npwex.matrix_init(X_test) 

 XYT = npwex.dot(X_train_sharded, X_test_sharded.T)
 XYT *= -2
 norms_train = npwex.linalg.norm(X_train, axis=1)
 norms_test = npwex.linalg.norm(X_test, axis=1)

NEAREST NEIGHBOR

 14

def nearest_neighbor_numpywren(X_train, X_test, y_train, y_test):
 npwex = npywren.default_executor() 

 X_train_sharded = npwex.matrix_init(X_train)
 X_test_sharded = npwex.matrix_init(X_test) 

 XYT = npwex.dot(X_train_sharded, X_test_sharded.T)
 XYT *= -2
 norms_train = npwex.linalg.norm(X_train, axis=1)
 norms_test = npwex.linalg.norm(X_test, axis=1)
 distances = norms_train + XYT + norms_test.T

NEAREST NEIGHBOR

 14

def nearest_neighbor_numpywren(X_train, X_test, y_train, y_test):
 npwex = npywren.default_executor() 

 X_train_sharded = npwex.matrix_init(X_train)
 X_test_sharded = npwex.matrix_init(X_test) 

 XYT = npwex.dot(X_train_sharded, X_test_sharded.T)
 XYT *= -2
 norms_train = npwex.linalg.norm(X_train, axis=1)
 norms_test = npwex.linalg.norm(X_test, axis=1)
 distances = norms_train + XYT + norms_test.T
 argmins = npwex.argmin(distances, axis=0).numpy()

NEAREST NEIGHBOR

 14

def nearest_neighbor_numpywren(X_train, X_test, y_train, y_test):
 npwex = npywren.default_executor() 

 X_train_sharded = npwex.matrix_init(X_train)
 X_test_sharded = npwex.matrix_init(X_test) 

 XYT = npwex.dot(X_train_sharded, X_test_sharded.T)
 XYT *= -2
 norms_train = npwex.linalg.norm(X_train, axis=1)
 norms_test = npwex.linalg.norm(X_test, axis=1)
 distances = norms_train + XYT + norms_test.T
 argmins = npwex.argmin(distances, axis=0).numpy()

NEAREST NEIGHBOR

 14

def nearest_neighbor_numpywren(X_train, X_test, y_train, y_test):
 npwex = npywren.default_executor() 

 X_train_sharded = npwex.matrix_init(X_train)
 X_test_sharded = npwex.matrix_init(X_test) 

 XYT = npwex.dot(X_train_sharded, X_test_sharded.T)
 XYT *= -2
 norms_train = npwex.linalg.norm(X_train, axis=1)
 norms_test = npwex.linalg.norm(X_test, axis=1)
 distances = norms_train + XYT + norms_test.T
 argmins = npwex.argmin(distances, axis=0).numpy()

 return metrics.accuracy_score(y_train[argmins], y_test)

NEAREST NEIGHBOR

 14

def nearest_neighbor_numpywren(X_train, X_test, y_train, y_test):
 npwex = npywren.default_executor() 

 X_train_sharded = npwex.matrix_init(X_train)
 X_test_sharded = npwex.matrix_init(X_test) 

 XYT = npwex.dot(X_train_sharded, X_test_sharded.T)
 XYT *= -2
 norms_train = npwex.linalg.norm(X_train, axis=1)
 norms_test = npwex.linalg.norm(X_test, axis=1)
 distances = norms_train + XYT + norms_test.T
 argmins = npwex.argmin(distances, axis=0).numpy()

 return metrics.accuracy_score(y_train[argmins], y_test)

SOLVING A LINEAR SYSTEM

 15

Ax=B

SOLVING A LINEAR SYSTEM

 15

1. Compute Cholesky Factorization LLT=A

Ax=B

SOLVING A LINEAR SYSTEM

 15

1. Compute Cholesky Factorization LLT=A
2. Forward substitution to solve Lz =B

Ax=B

SOLVING A LINEAR SYSTEM

 15

1. Compute Cholesky Factorization LLT=A
2. Forward substitution to solve Lz =B
3. Backward substitution LTx = z

Ax=B

SOLVING A LINEAR SYSTEM

 15

1. Compute Cholesky Factorization LLT=A
2. Forward substitution to solve Lz =B
3. Backward substitution LTx = z

Ax=B

O(n3)

SOLVING A LINEAR SYSTEM

 15

1. Compute Cholesky Factorization LLT=A
2. Forward substitution to solve Lz =B
3. Backward substitution LTx = z

Ax=B

O(n3)
O(n2)

SOLVING A LINEAR SYSTEM

 15

1. Compute Cholesky Factorization LLT=A
2. Forward substitution to solve Lz =B
3. Backward substitution LTx = z

Ax=B

O(n3)
O(n2)
O(n2)

SOLVING A LINEAR SYSTEM

 15

1. Compute Cholesky Factorization LLT=A
2. Forward substitution to solve Lz =B
3. Backward substitution LTx = z

Ax=B

O(n3)
O(n2)
O(n2)

 16

numpywren.cholesky

...

cholesky

 col update col update col update

... λ λ
λλ λ
λ

1

cholesky(iter=0)
 0 = LOAD BigMatrix(X)[0, 0]
 1 = CHOL 0
 2 = WRITE chol(BigMatrix(X))[0, 0]
col_update(row=1, col=0)
 3 = LOAD chol(BigMatrix(X))[0, 0]
 4 = LOAD BigMatrix(X)[1, 0]
 5 = TRSM 3 4
 6 = WRITE chol(BigMatrix(X))[1, 0]
col_update(row=2, col=0)
 ...
low_rank_update(iter=0, row=1, col=2)
 15 = LOAD chol(BigMatrix(X))[0, 0]
 16 = LOAD chol(BigMatrix(X))[1, 0]
 17 = LOAD chol(BigMatrix(X))[2, 0]
 18 = SYRK 15 16 17
 19 = WRITE temp(BigMatrix(X))[0, 1, 2]
low_rank_update(iter=0, row=1, col=3)
 ...

2 3

4

low rank
 update

low rank
 update

low rank
 update

 16

numpywren.cholesky

...

cholesky

 col update col update col update

... λ λ
λλ λ
λ

1

cholesky(iter=0)
 0 = LOAD BigMatrix(X)[0, 0]
 1 = CHOL 0
 2 = WRITE chol(BigMatrix(X))[0, 0]
col_update(row=1, col=0)
 3 = LOAD chol(BigMatrix(X))[0, 0]
 4 = LOAD BigMatrix(X)[1, 0]
 5 = TRSM 3 4
 6 = WRITE chol(BigMatrix(X))[1, 0]
col_update(row=2, col=0)
 ...
low_rank_update(iter=0, row=1, col=2)
 15 = LOAD chol(BigMatrix(X))[0, 0]
 16 = LOAD chol(BigMatrix(X))[1, 0]
 17 = LOAD chol(BigMatrix(X))[2, 0]
 18 = SYRK 15 16 17
 19 = WRITE temp(BigMatrix(X))[0, 1, 2]
low_rank_update(iter=0, row=1, col=3)
 ...

2 3

4

low rank
 update

low rank
 update

low rank
 update

 16

numpywren.cholesky

...

cholesky

 col update col update col update

... λ λ
λλ λ
λ

1

cholesky(iter=0)
 0 = LOAD BigMatrix(X)[0, 0]
 1 = CHOL 0
 2 = WRITE chol(BigMatrix(X))[0, 0]
col_update(row=1, col=0)
 3 = LOAD chol(BigMatrix(X))[0, 0]
 4 = LOAD BigMatrix(X)[1, 0]
 5 = TRSM 3 4
 6 = WRITE chol(BigMatrix(X))[1, 0]
col_update(row=2, col=0)
 ...
low_rank_update(iter=0, row=1, col=2)
 15 = LOAD chol(BigMatrix(X))[0, 0]
 16 = LOAD chol(BigMatrix(X))[1, 0]
 17 = LOAD chol(BigMatrix(X))[2, 0]
 18 = SYRK 15 16 17
 19 = WRITE temp(BigMatrix(X))[0, 1, 2]
low_rank_update(iter=0, row=1, col=3)
 ...

2 3

4

low rank
 update

low rank
 update

low rank
 update

Compute Storage

Lambda S3

Control Flow

SQS

EXECUTION

 17

⋮

0

Time

⋮

EXECUTION

 18

.

Instruction Queue

⋮

0

Time

⋮

EXECUTION

 19

Local Queue
(per core)

.

Instruction Queue

Compute
Thread

Write
Thread

Read
Thread

⋮

0

Time

⋮

EXECUTION

 20

Local Queue
(per core)

.

Instruction Queue

S3 Load
Chol

S3 Write

S3 Load
SYRK

S3 Write

S3 Load
SYRK

S3 Write

S3 Load
TRSM

S3 Write

Compute
Thread

Write
Thread

Read
Thread

⋮

0

Time

⋮

EXECUTION

 21

Local Queue
(per core)

Instruction Queue

Compute
Thread

Write
Thread

Read
Thread

⋮

S3Load

CHOL

S3Write

1

Time

.

S3 Load
SYRK

S3 Write

S3 Load
SYRK

S3 Write

S3 Load
TRSM

S3 Write

1

EXECUTION

 22

Local Queue
(per core)

Instruction Queue

Compute
Thread

Write
Thread

Read
Thread

⋮

CHOL

S3Write

S3Load

S3Load

SYRK

S3Write

2

Time

.

S3 Load
SYRK

S3 Write

S3 Load
TRSM

S3 Write

2

EXECUTION

 23

Local Queue
(per core)

Instruction Queue

Compute
Thread

Write
Thread

Read
Thread

⋮

⋮

S3Write

SYRK

S3Write

3

Time

CHOLS3Load

S3Load

SYRK

S3Write

.
S3 Load
TRSM

S3 Write

3

EXECUTION

 24

Local Queue
(per core)

Instruction Queue

Compute
Thread

Write
Thread

Read
Thread

S3Write

2

Time

SYRK

S3Write

S3WriteSYRKS3Load

S3Load

TRSM

S3Write .

4

Full pipelining

EXECUTION

 25

Local Queue
(per core)

Instruction Queue

Compute
Thread

Write
Thread

Read
Thread

S3Write

2

Time

SYRK

S3Write

S3LoadTRSM

S3Write

5

New Instructions Enqueued 
(based on task graph)

S3 Load
Chol

S3 Write

S3 Load
SYRK

S3 Write

S3 Load
SYRK

S3 Write

S3 Load
TRSM

S3 Write

PERFORMANCE

 26

End to end
runtimeEfficiency

How long did it take
to get an answer

How efficiently did I use  
my resources

TOTAL CORE SECONDS USED

 27

END TO END COMPLETION TIME

 28

Shivaram
Venkataraman

Ben
Recht

Ion
Stoica

Qifan PuVaishaal Shankar Karl Krauth Jonathan  
Ragan-Kelly

NumPyWren

Eric Jonas
jonas@eecs.berkeley.edu  
@stochastician

Shivaram
Venkataraman

Ben
Recht

Ion
Stoica

Qifan PuVaishaal Shankar Karl Krauth Jonathan  
Ragan-Kelly

NumPyWren
• Serverless linear algebra is possible,

performant, elastic, and easy

Eric Jonas
jonas@eecs.berkeley.edu  
@stochastician

Shivaram
Venkataraman

Ben
Recht

Ion
Stoica

Qifan PuVaishaal Shankar Karl Krauth Jonathan  
Ragan-Kelly

NumPyWren
• Serverless linear algebra is possible,

performant, elastic, and easy

• Releasing code this month

Eric Jonas
jonas@eecs.berkeley.edu  
@stochastician

Shivaram
Venkataraman

Ben
Recht

Ion
Stoica

Qifan PuVaishaal Shankar Karl Krauth Jonathan  
Ragan-Kelly

NumPyWren
• Serverless linear algebra is possible,

performant, elastic, and easy

• Releasing code this month
• Next steps: Op fusion, straggler mitigation,

even higher-level interfacesEric Jonas
jonas@eecs.berkeley.edu  
@stochastician

Shivaram
Venkataraman

Ben
Recht

Ion
Stoica

Qifan PuVaishaal Shankar Karl Krauth Jonathan  
Ragan-Kelly

NumPyWren
• Serverless linear algebra is possible,

performant, elastic, and easy

• Releasing code this month
• Next steps: Op fusion, straggler mitigation,

even higher-level interfaces
• Questions?

Eric Jonas
jonas@eecs.berkeley.edu  
@stochastician

DISCUSSION SLIDE
• What additional services need to be truly elastic to make

these sorts of applications possible?

• How much control do we want/need over queues, timing,
latency, etc?

• What is the equilibrium price for serverless architectures?

• How can we expand this as a development platform for
others

 30

