
© 2017 IBM Corporation l Interconnect 2017

Serverless
Where Have We Come?
Where Are We Going?

Stephen Fink
Distinguished Engineer
IBM Watson

© 2017 IBM Corporation

@sjfink

© 2018 IBM Corporation

© 2018 IBM Corporation

Gartner Hype Cycle for Emerging Technologies 2017

You are here

© 2018 IBM Corporation

Serverless 2018?

You are here?

© 2018 IBM Corporation

Are you ready?

© 2018 IBM Corporation

About your speaker

2014-2017 IBM’s OpenWhisk/Cloud Functions

© 2018 IBM Corporation

About your speaker

Serverless Advocate
2014-2017 IBM’s OpenWhisk/Cloud Functions

© 2018 IBM Corporation

Gave talks like ….

© 2018 IBM Corporation

Serverless
“Making Development Fun Again”

With slides like …

© 2018 IBM Corporation

About your speaker

2014-2017 IBM’s OpenWhisk/Cloud Functions
2017-2018 Architect for IBM Watson

© 2018 IBM Corporation

© 2017 International Business Machines Corporation

© 2018 IBM Corporation

© 2017 International Business Machines Corporation

large development
organization

invested in
microservices

typical business
pressure

© 2017 IBM Corporation l Interconnect 2017

Serverless for Watson
Hype and Reality

© 2017 IBM Corporation

© 2018 IBM Corporation

Platform handles all
infrastructure transparently

VM

No servers Just code

Serverless Principles

Write functions.
Not plumbing.

© 2018 IBM Corporation

conventional microservice
architecture

Developer Responsibilities

business logic
service integrations

IaaS: programmatic
PaaS: declarative

containers
middleware
autoscaling
load balancing
service discovery
fault tolerance
logging
messaging
security patches

serverless
architecture

Developer Responsibilities
business logic
service integrations (declarative)
REST API definition (declarative)

Platform Responsibilities
containers
middleware
autoscaling
load balancing
service discovery
fault tolerance
logging
messaging
security patches

© 2018 IBM Corporation

Time to Initial Value

build a robust,
fault-tolerant, scalable

microservice in minutes

© 2018 IBM Corporation

\Ship it!

© 2018 IBM Corporation

Ship it!

© 2018 IBM Corporation

]

Hype: Just deploy your code. The system
handles logging and monitoring automatically!

© 2018 IBM Corporation

]

Reality: All Watson systems already have extensive management,
 logging, DevOps, and monitoring.

Serverless doesn’t help integrate into existing production environment.

© 2017 IBM Corporation l Interconnect 2017

Hype: Just deploy your code.
Specify an API declaratively. API Gateway does the rest!

© 2017 IBM Corporation l Interconnect 2017

Reality: Conventional web frameworks have
tools, libraries, ecosystems tuned precisely for this problem.
A serverless REST endpoint doesn’t save that much code.

© 2018 IBM Corporation

\

Hype: specify your service integrations declaratively.
Wrap services as functions, compose at will, and go!

© 2018 IBM Corporation

Reality: Service integrations have many flavors and options.
Code and SDKs is still the easiest way to invoke Watson in realistic

use cases.

© 2018 IBM Corporation

© 2018 IBM Corporation

Move to
Production

Initial Prototype

SaaS

© 2018 IBM Corporation

© 2018 IBM Corporation

You need to add custom logic to a
hosted SaaS chatbot.

© 2018 IBM Corporation

SaaS tooling with
serverless

extension points.

Serverless:
perfect match

for extension points in
hosted solutions.

© 2018 IBM Corporation

Serverless Principles

Write functions.
Not plumbing.

Hype or Reality?

© 2018 IBM Corporation

Serverless Principles

Write functions.
Not plumbing.

Initial Prototype

Hype or Reality?

© 2018 IBM Corporation

Serverless Principles

Write functions.
Not plumbing.

Initial Prototype

Integration with Production
Systems

Hype or Reality?

© 2018 IBM Corporation

Serverless Principles

Write functions.
Not plumbing.

Initial Prototype

Integration with Production
Systems

SaaS Extension Points

Hype or Reality?

© 2018 IBM Corporation

Functions run in response to events

Event-driven
Programming

Serverless Principles

© 2018 IBM Corporation

WHEN a document is uploaded, injest the document into the knowledge store

WHEN the logs grow to certain size gather the logs, perform ETL, retrain a new model

WHEN a new model is available evaluate the accuracy

EVERY 15 minutes poll a stream for new data to inject

Event-driven programming in Watson AI

© 2018 IBM Corporation

Event-driven programming in Watson AI

© 2018 IBM Corporation

WHEN a document is uploaded, injest the document into the knowledge store

Event-driven programming in Watson AI

© 2018 IBM Corporation

WHEN a document is uploaded, injest the document into the knowledge store

WHEN the logs grow to certain size gather the logs, perform ETL, retrain a new model

Event-driven programming in Watson AI

© 2018 IBM Corporation

WHEN a document is uploaded, injest the document into the knowledge store

WHEN the logs grow to certain size gather the logs, perform ETL, retrain a new model

WHEN a new model is available evaluate the accuracy

Event-driven programming in Watson AI

© 2018 IBM Corporation

WHEN a document is uploaded, injest the document into the knowledge store

WHEN the logs grow to certain size gather the logs, perform ETL, retrain a new model

WHEN a new model is available evaluate the accuracy

EVERY 15 minutes poll a stream for new data to inject

Event-driven programming in Watson AI

© 2018 IBM Corporation

© 2018 IBM Corporation

Functions run in response to eventsEvent-driven
Programming

Serverless Principles

Hype or Reality?

© 2018 IBM Corporation

Functions run in response to eventsEvent-driven
Programming

Serverless Principles

+ not latency sensitive
+ highly elastic

Hype or Reality?

© 2018 IBM Corporation

Scale instantly.
No provisioning.

Enlist more resources
automatically based on
offered load

Serverless Principles

© 2018 IBM Corporation

zz
z

time
chargedFine-grain pricing.

Pay only for the exact time your actions run,
metered on the order of milliseconds

Serverless Principles

© 2018 IBM Corporation

Serverless Principles

© 2018 IBM Corporation

Compute Cycles

Everything Else

Total Cost of Solution
(unscientific estimates)

Development
Operations

Support

Storage
Networking

Compute

© 2018 IBM Corporation

Scale instantly. No provisioning.

Serverless Principles

zz
z

time
charged

Fine-grain pricing.

Hype or Reality?

© 2018 IBM Corporation

Scale instantly. No provisioning.

Serverless Principles

zz
z

time
charged

Fine-grain pricing.

Hype or Reality?

Startup or hobby-ist

© 2018 IBM Corporation

Scale instantly. No provisioning.

Serverless Principles

zz
z

time
charged

Fine-grain pricing.

Hype or Reality?

Startup or hobby-ist

Large Enterprise often irrelevant

© 2018 IBM Corporation

© 2018 IBM Corporation

Cloud: an evolutionary story

In
cr

ea
si

ng
 fo

cu
s

on
 b

us
in

es
s

lo
gi

c

Decreasing concern (and control) over stack implementation

Bare Metal

VM VM

VM

Virtual machines

Functions

Containers

© 2018 IBM Corporation

© 2018 IBM Corporation

FunctionsContainers

 + Fine-Grain Metering
 + Faster Autoscaling
 + Event-driven Programming

© 2018 IBM Corporation

FunctionsContainers + Tools
+ Control and Flexibility
+ De Facto Standards

© 2018 IBM Corporation

FunctionsContainers

Convergence

Infrastructure Convergence

The End of the Road for Serverless?

© 2018 IBM Corporation

© 2018 IBM Corporation

Serverless
Innovation in

Cloud infrastructure
Programming

Model

Composing 
IBM Cloud Functions

https://ibm.biz/serverless-research

Kerry Chang, Olivier Tardieu
IBM Research

Apps are Compositions of Functions

try {
 let zipCode = getZipCode(location);
 return getWeather(zipCode);  
} catch(err) {
 return { message: `Unable to retrieve weather info: ${err}` };
}

 64

Does not work as a serverless app
• Time limit, double billing getZipCode getWeather

myWeatherApp
$

$ $

Serverless App using Composer
try {
 let zipCode = getZipCode(location);
 return getWeather(zipCode);  
} catch(err) {
 return { message: `Unable to retrieve weather info: ${err}` };
}

 65

composer.try( 
 composer.sequence(
 'getZipCode', // cloud function
 'getWeather'), // cloud function 
 (err) => ({ message: `Unable to retrieve weather info: ${err}` })
);

• if/else
• try/catch
• data forwarding
• inline functions

for simple
operations

 66

© 2018 IBM Corporation

Serverless
Event-Driven
Workflow

Event-driven
Programming

Serverless Principles

© 2018 IBM Corporation

In Conclusion

© 2018 IBM Corporation

In Conclusion

1. Integration: You don’t own main()

2. Embrace containers - infrastructure convergence is coming

3. Innovate on event-driven programming model

© 2018 IBM Corporation

Q&A

