
Hyungro Lee, Kumar Satyam and Geoffrey C. Fox
July 2, 2018 Third International Workshop on Serverless Computing 

(WoSC), San Francisco, CA

Indiana University Bloomington

Evaluation of Production Serverless 
Computing Environments

1



2

• Minimum granularity of infrastructure provisioning
• Support in distributed data processing
• Rich set of event handlers (triggers, invocation methods)
• Pay-as-you-execute 

– Cost effectiveness (Migrating IaaS to FaaS)

Background



3

• Minimum granularity of infrastructure provisioning
• Support in distributed data processing
• Rich set of event handlers (triggers, invocation methods)
• Pay-as-you-execute 

– Cost effectiveness (Migrating IaaS to FaaS)

Background



4

• Minimum granularity of infrastructure provisioning
• Support in distributed data processing
• Rich set of event handlers (triggers, invocation methods)
• Pay-as-you-execute 

– Cost effectiveness (Migrating IaaS to FaaS)

Background



5

• Equivalent behaviors to function performance Elasticity for concurrent 
executions

• DevOps issues- continuous development/integration of functions
• Early stage of development on public clouds

Problems



6

• Comprehensive performance evaluation of the existing serverless platforms
– Amazon Lambda
– Microsoft Azure Functions
– Google Functions
– IBM Functions powered by Apache OpenWhisk
– w.r.t CPU, File I/O and network intensive workloads

• Summary of available features, runtimes and limitations

Contribution



7

• 500, 1k, 2k, 3k and 10k concurrent 
invocations

• Trigger:
– Amazon: Python boto3 library (event 

type; asynchronous mode)
– Google: bucket storage
– Azure: HTTP REST API
– IBM: HTTP REST API (non-blocking)

Function Throughput 



8

CPU Intensive Function
Function task
- Matrix multiplication with a size of 512
- Written by JavaScript (nodeJS runtime)

Configuration
- Amazon: 1.5GB Mem/5min timeout
- Azure: N/A mem/10min
- Google:2G mem/9min
- IBM: 512M mem/5min

Platform Execution set Mean in sec Diff

AWS Lambda

1 func invocation
x100 times

1.77

100 func
invocations x1 time

3.72 2.11x

Azure Functions
1x100 6.78

100x1 319.24 47.06x

Google 
Functions

1x100 3.09

100x1 18.79 6.07x

IBM 
OpenWhisk*

1x100 3.80

100x1 4.88 1.28x



9

Function task:
- 1 random write + 1 random read
- 100MB size of a file in a temp directory
- read of 512bytes with random offset
- write with fsync
- Python runtime

Configuration
- Amazon: 1.5GB Mem/5min timeout
- Azure: N/A mem/10min
- Google:2G mem/9min
- IBM: 512M mem/5min

File I/O Intensive Function

Platform Execution set Mean in sec 
(std)

Diff Read
(MB/s)

Write 
(MB/s)

AWS Lambda

1 func invocation
x100 times

1.88 (0.08) 152.98 82.98

100 func
invocations x1 time

3.61 (0.14) 1.92x 92.95 39.49

Azure 
Functions

1x100 3.44 (0.17) 423.92 44.14

100x1 failed (device
busy)

- - -

Google 
Functions

1x100 12.26 (0.55) 55.88 9.44

100x1 30.11 (8.39) 2.46x 54.14 3.57

IBM 
OpenWhisk*

1x100 14.04 (2.33) 68.23 7.86

100x1 61.55 (4.49) 4.38x 33.89 0.50



10

Function task:
- 1 random write + 1 random read
- 100MB size of a file in a temp directory
- read of 512bytes with random offset
- write with fsync
- Python runtime

Configuration
- Amazon: 1.5GB Mem/5min timeout
- Azure: N/A mem/10min
- Google:2G mem/9min
- IBM: 512M mem/5min

File I/O Intensive Function

Platform Execution set Mean in sec 
(std)

Diff Read
(MB/s)

Write 
(MB/s)

AWS Lambda

1 func invocation
x100 times

1.88 (0.08) 152.98 82.98

100 func
invocations x1 time

3.61 (0.14) 1.92x 92.95 39.49

Azure 
Functions

1x100 3.44 (0.17) 423.92 44.14

100x1 failed (device
busy)

- - -

Google 
Functions

1x100 12.26 (0.55) 55.88 9.44

100x1 30.11 (8.39) 2.46x 54.14 3.57

IBM 
OpenWhisk*

1x100 14.04 (2.33) 68.23 7.86

100x1 61.55 (4.49) 4.38x 33.89 0.50



11

Function task:
- 1 random write + 1 random read
- 100MB size of a file in a temp directory
- read of 512bytes with random offset
- write with fsync
- Python runtime

Configuration
- Amazon: 1.5GB Mem/5min timeout
- Azure: N/A mem/10min
- Google:2G mem/9min
- IBM: 512M mem/5min

File I/O Intensive Function

Platform Execution set Mean in sec 
(std)

Diff Read
(MB/s)

Write 
(MB/s)

AWS Lambda

1 func invocation
x100 times

1.88 (0.08) 152.98 82.98

100 func
invocations x1 time

3.61 (0.14) 1.92x 92.95 39.49

Azure 
Functions

1x100 3.44 (0.17) 423.92 44.14

100x1 failed (device
busy)

- - -

Google 
Functions

1x100 12.26 (0.55) 55.88 9.44

100x1 30.11 (8.39) 2.46x 54.14 3.57

IBM 
OpenWhisk*

1x100 14.04 (2.33) 68.23 7.86

100x1 61.55 (4.49) 4.38x 33.89 0.50



12

Function task:
- Transfer 100MB size of a file from object storage
- AWS S3/Azure Blob/Google Bucket/IBM Object 

storage
- nodeJS runtime

Configuration
- Amazon: 1.5GB mem/5min timeout
- Azure: N/A mem/10min
- Google:2G mem/9min
- IBM: 512M mem/5min

Network Intensive Function

Platform Execution set Mean in sec
(std)

Diff

AWS Lambda

1 func invocation
x100 times

1.34 (0.06)

100 func
invocations x1 time

2.44 (0.21) 1.82x

Azure Functions
1x100 9.42 (1.93)

100x1 failed -

Google 
Functions

1x100 5.12 (0.27)

100x1 7.19 (1.37) 1.40x

IBM 
OpenWhisk*

1x100 3.61 (0.26)

100x1 27.97 (12.25) 7.75x



13

Elasticity
Function task
- building a small binary tree in 

100 ms
- 10,000 invocations made in a 

minute
- 200ms interval per invocation 

with 10 to 90 concurrency

Figure Details
- gray line: Number of 

invocations
- blue dot: response time of each 

function
- yellow horizontal line: 99%
- green horizontal line: 50%



14

Continuous Development
Function task
- Small computations run in 1-2 

seconds
- 500 total invocations
- 10 concurrency
- completed in 10 seconds

Actions
- Function code is updated prior 

200 invocations
- Configuration is changed in the 

next 200 invocations

Figure Details
- gray dot: response time of 

each function
- green +: new instance
- red x: failed instance



15

Item AWS Lambda Azure Functions Google Functions IBM OpenWhisk

Runtime Node.js – 4.3, 6.10
Python - 2.7, 3.6
Java 8
C# - 1.0, 2.0
Golang 1.x

(Default)
Node.js - 6.11, 8.4
C# 1.0, 2.0
F# 4.6,
(Experimental)
batch, bash,  php, 
powershell, python 
2.7, typescript, Java 8

Node.js 6.11.5
(Python 2.7)

Node.js – 6,8
Python – 2.7, 3.6
Java 8,
C#, swift, php, docker

Memory Limit 128 to 3008MB (with 
64mb increments)

1536MB (actual 
usage)

128 to 2048MB (with 
256, 512, and 1024MB 
in between)

128 to 512MB (with 
32mb increments)

Timeout 300 sec 600 sec 540 sec 600 sec

Code size 50MB (250MB –
compressed)

n/a 100MB (500MB –
compressed)

48MB

Triggers 19 triggers (e.g. S3, 
dynamoDB, 
CloudWatch Logs, 
Events)

17 triggers (e.g. Blob 
storage, Cosmos DB, 
Event Hubs)

3 triggers (e.g. HTTP, 
Pub/Sub, Storage 
Bucket)

6 triggers (e.g. 
Cloudant, Message 
Hub, Github)

Base OS Amazon Linux Windows NT Debian GNU/Linux 8 
(Jessie)

Alpine Linux

Feature comparison



16

• Concurrent executions for distributed workloads
• Elasticity for dynamic applications
• Results at github dev branch: https://github.com/lee212/FaaS-Evaluation

Conclusion



17

• Open source serverless framework
– OpenWhisk, Kubeless, fnproject, fission

• Additional runtimes with extra libraries
– tensorflow, numpy

• Common functions to share in public
• Secured layer for connected services

Future Work



18

Thank you!

Questions?


