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Large-scale analytical data 
processing

o Spark adoption is booming
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Large-scale analytical data 
processing

o Spark adoption is booming
o Many use cases
=> Requirement: Pre-installed on a cluster before they can be used for 
analytics

◦ On-premise data center or cluster of virtual instances in the cloud



Large-scale analytical data 
processing
o Problem: Cluster management can be difficult
o monitoring the health of worker nodes
o troubleshoot a variety of issues
o fixing/replacing underperforming nodes

May not be feasible for many small startups/researchers with the 
limited resources !



Large-scale analytical data 
processing
o How about scaling?



Managed big data frameworks
o Current solution: Managed big data frameworks

o Example: Amazon Elastic Map Reduce (EMR)

o Advantages:

o Reduces the burden of cluster management

o Save costs (automatically terminated)

o Limitations:

o Time is wasted in cluster initialization/rescaling/teardown

o Need to choose the details of the managed cluster

o There are still management overheads & idle costs.



Serverless analytics
o Serverless analytics to the rescue!
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Flint

o Flint: prototype execution engine for serverless PySpark
o PySpark with serverless backend by simply specifying a config file
o No costs for idle capacity
o Simplicity
o Use cases: ad hoc analytics and exploratory data analysis



Flint architecture
o Spark tasks are executed in AWS Lambda
o Intermediate data are held in Amazon’s Simple Queue Service (SQS)
o Reuses as many existing Spark components as possible
oQuery planning and optimization
oMany different types of RDD transformations



Workflow
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Flint architecture
o The Flint scheduler coordinates Flint executors to execute a 

particular physical plan
oFunction registration
oQueue initialization
oSerialization
o Invocation using thread pool
oProcess the response from an executor



Flint executor
o Flint executor is a python process running inside an Amazon Lambda 

function
oEach serverless compute function invocation processes a single task
oSimplifies the communication requirement between an executor 

and a driver
oLess affected by the limitation of execution time



Remote storage for shuffling
◦ No permanent storage
◦ Small ephemeral disk space (~512 MB)
◦ Execution time limitation

=> Cannot guarantee the Flint executors from the previous stage are 
still alive to pass data

◦ Communication between Lambda functions

◦ Amazon’s Simple Queue Service (SQS)
◦ highly-scalable
◦ reliable



Experimental Evaluation
◦ A Spark cluster running the Databricks Unified Analytics Platform 

(Standard)
◦ 11 m4.2xlarge instances (one driver and ten workers) - 80 vCores
◦ 80 max concurrent invocations (~ 80 vCores)



Experimental Evaluation
◦ NYC taxi dataset (215 GB)
◦ Pick-up and drop-off dates/time, trip distance, payment type, tip 

amount
◦ Queries inspired by an exploratory data analysis task described in a 

popular blog post by Todd Schneider



Experimental Evaluation
◦ Q0: Line count
◦ Q1: Taxi drop-offs at the Goldman Sachs headquarters (hourly 

aggregation)



Experimental Evaluation

◦ Q2: Similar to Q1, but for Citigroup headquarters
◦ Q3: Goldman Sachs taxi drop-offs with tips greater than $10
◦ Q4: Cash vs. credit card payments
◦ Q5: Yellow taxi vs. green taxi , monthly aggregation
◦ Q6: Effect of precipitation on taxi trips



Experimental Evaluation



Experimental Evaluation
• Q1: Taxi drop-offs at the Goldman Sachs headquarters (hourly aggregation)
• Q3: Goldman Sachs taxi drop-offs with tips greater than $10
tradeoff of concurrency between the latency and the cost



Lambda Limitations
◦ Most serverless platforms currently have several limitations

◦ Memory size (e.g. 3008 MB for AWS)
◦ Execution time limitation (5 ~ 9 minutes)
◦ Cold start problem
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Lambda Limitations



Lambda Limitations
Other constraints
◦ Memory (3008 MB)
◦ Request size: 6 MB

◦ Metadata
◦ Response size: 6 MB

◦ Collect



Related Work
o Iris:
o The origin of Flint (A course project, UWaterloo, Fall 2016)
o Distributed computation framework supporting a subset of Spark API

o In-browser data analytics backed by serverless backend 

o Amazon Athena
o Per-query pricing with zero idle costs
o Only supports SQL

o Presto distributed SQL engine

o Databricks Serverless
o Automatically managed pools of cloud resources

◦ auto-configured & auto-scaled



Related Work
o PyWren

◦ Framework built from scratch on top of serverless compute 
functions and persistent storage

o Qubole Spark on Serverless
o Ported the existing Spark executor infrastructure onto AWS 

Lambda, whereas Flint is a from-scratch implementation
oCommunication model
oAWS Lambda limitations



Future Work
◦ Intensive shuffling tasks
◦ Robustness
◦ Higher level libraries (e.g. MLlib)


