Serverless Data Analytics with Flint
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o Spark adoption is booming

o Many use cases
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o Spark adoption is booming

o Many use cases

=> Requirement: Pre-installed on a cluster before they can be used for
analytics

> On-premise data center or cluster of virtual instances in the cloud
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o Problem: Cluster management can be difficult
o monitoring the health of worker nodes
o troubleshoot a variety of issues

o fixing/replacing underperforming nodes

May not be feasible for many small startups/researchers with the
limited resources !
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o How about scaling?
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Managed big data frameworks

o Current solution: Managed big data frameworks

o Example: Amazon Elastic Map Reduce (EMR)

o Advantages:
o Reduces the burden of cluster management
o Save costs (automatically terminated)

o Limitations:
o Time is wasted in cluster initialization/rescaling/teardown
o Need to choose the details of the managed cluster

o There are still management overheads & idle costs.



Serverless analytics

o Serverless analytics to the rescue!
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Flint

o Flint: prototype execution engine for serverless PySpark
o PySpark with serverless backend by simply specifying a config file

o No costs for idle capacity
o Simplicity
®

Use cases: ad hoc analytics and exploratory data analysis




Flint architecture

o Spark tasks are executed in AWS Lambda
o Intermediate data are held in Amazon’s Simple Queue Service (SQS)

o Reuses as many existing Spark components as possible
o Query planning and optimization

o Many different types of RDD transformations




Workflow
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Flint architecture
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Flint architecture

o The Flint scheduler coordinates Flint executors to execute a
particular physical plan

o Function registration
o Queue initialization

o Serialization
o Invocation using thread pool

o Process the response from an executor



Flint executor

o Flint executor is a python process running inside an Amazon Lambda
function

o Each serverless compute function invocation processes a single task

o Simplifies the communication requirement between an executor
and a driver

o Less affected by the limitation of execution time




Remote storage for shuftling

o

No permanent storage
Small ephemeral disk space (~512 MB)
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Execution time limitation

=> Cannot guarantee the Flint executors from the previous stage are
still alive to pass data

Communication between Lambda functions
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Amazon’s Simple Queue Service (SQS)

> highly-scalable
o reliable



Experimental Evaluation

o A Spark cluster running the Databricks Unified Analytics Platform
(Standard)

> 11 m4.2xlarge instances (one driver and ten workers) - 80 vCores

> 80 max concurrent invocations (~ 80 vCores)




Experimental Evaluation

o NYC taxi dataset (215 GB)

> Pick-up and drop-off dates/time, trip distance, payment type, tip
amount

o Queries inspired by an exploratory data analysis task described in a
popular blog post by Todd Schneider




Experimental Evaluation

o QO: Line count

o Q1: Taxi drop-offs at the Goldman Sachs headquarters (hourly
aggregation)

arr = src.map(lambda x: x.split(’,’)) \
filter(lambda x: inside(x, goldman)) \
.map(lambda x: (get_hour(x), 1)) \
.reduceByKey(add, 30) \

.collect()




Experimental Evaluation

o

Q2: Similar to Q1, but for Citigroup headquarters

Q3: Goldman Sachs taxi drop-offs with tips greater than $10
Q4: Cash vs. credit card payments
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Q5: Yellow taxi vs. green taxi , monthly aggregation
Q6: Effect of precipitation on taxi trips

o




Experimental Evaluation

Query Latency (s) Estimated Cost (USD)
 Flint PySpark Spark Flint PySpark Spark
0 | 101 [93 - 109] 211 188 0.20 041 0.37
1 | 190 [186 - 197] 316 189 0.59 0.61 0.37
2 | 203 [201 - 205]) 314 187 0.68 0.61 0.36
3 | 165 (161 - 169] 312 188 0.48 0.61 0.36
4 | 132122 - 142) 225 189 0.33 0.44 0.37
S| 1591142 - 177) 312 189 0.45 0.60 0.37
6 | 277 (272 - 281] 337 191 0.56 0.66 0.37
TABLE |

QUERY LATENCY AND COST COMPARISONS.



Experimental Evaluation

* Q1l: Taxi drop-offs at the Goldman Sachs headquarters (hourly aggregation)
* Q3: Goldman Sachs taxi drop-offs with tips greater than $S10
tradeoff of concurrency between the latency and the cost
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Lambda Limitations

> Most serverless platforms currently have several limitations
> Memory size (e.g. 3008 MB for AWS)

o Execution time limitation (5 ~ 9 minutes)
o Cold start problem




Lambda Limitations

Execution time limitation

Record Record

L Timeout
Record Record

rocessed by another
executor

Record

at

{ bucket: ..., range: 720-1000,

Driver

{ status: complete, ...}




Lambda Limitations
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Figure 3.4: PySpark imternaks on standard Spark chaster Workers rely on Java /Scala
Spark ranning on JVM



Lambda Limitations

Other constraints
> Memory (3008 MB)
o Request size: 6 MB

> Metadata
o Response size: 6 MB

o Collect




Related Work

o lris:

o The origin of Flint (A course project, UWaterloo, Fall 2016)
o Distributed computation framework supporting a subset of Spark API

o In-browser data analytics backed by serverless backend

o Amazon Athena

o Per-query pricing with zero idle costs
o Only supports SQL

o Presto distributed SQL engine

o Databricks Serverless
o Automatically managed pools of cloud resources
o auto-configured & auto-scaled



Related Work

o PyWren

o Framework built from scratch on top of serverless compute
functions and persistent storage

o Qubole Spark on Serverless

o Ported the existing Spark executor infrastructure onto AWS
Lambda, whereas Flint is a from-scratch implementation

o Communication model
o AWS Lambda limitations



Future Work

° Intensive shuffling tasks
> Robustness

o Higher level libraries (e.g. MLIib)




