Serverless Data Analytics with Flint

YOUNGBIN KIM AND JIMMY LIN

- Spark adoption is booming
- Many use cases

- Spark adoption is booming
- Many use cases
- => Requirement: Pre-installed on a cluster before they can be used for analytics
 - On-premise data center or cluster of virtual instances in the cloud

• Problem: Cluster management can be difficult

- monitoring the health of worker nodes
- troubleshoot a variety of issues
- o fixing/replacing underperforming nodes

May not be feasible for many small startups/researchers with the limited resources !

• How about scaling?

Spark³ Spark³ Spark³ Spark³ ----0 0 0 _ _ _ _ _ _ _ _ ----0 _ _ _ _

Managed big data frameworks

- Current solution: Managed big data frameworks
- Example: Amazon Elastic Map Reduce (EMR)
- Advantages:
 - Reduces the burden of cluster management
 - Save costs (automatically terminated)
- Limitations:
 - Time is wasted in cluster initialization/rescaling/teardown
 - Need to choose the details of the managed cluster
- There are still management overheads & idle costs.

Serverless analytics

• Serverless analytics to the rescue!

Flint

- Flint: prototype execution engine for serverless PySpark
 - PySpark with serverless backend by simply specifying a config file
 - No costs for idle capacity
 - Simplicity
 - Use cases: ad hoc analytics and exploratory data analysis

Flint architecture

- Spark tasks are executed in AWS Lambda
- Intermediate data are held in Amazon's Simple Queue Service (SQS)
- Reuses as many existing Spark components as possible
 - Query planning and optimization
 - Many different types of RDD transformations

Workflow

Spark Application

Flint architecture

Flint architecture

- The Flint scheduler coordinates Flint executors to execute a particular physical plan
 - Function registration
 - Queue initialization
 - o Serialization
 - o Invocation using thread pool
 - Process the response from an executor

Flint executor

- Flint executor is a python process running inside an Amazon Lambda function
- Each serverless compute function invocation processes a single task
 - Simplifies the communication requirement between an executor and a driver
 - o Less affected by the limitation of execution time

Remote storage for shuffling

- No permanent storage
- Small ephemeral disk space (~512 MB)
- Execution time limitation
 => Cannot guarantee the Flint executors from the previous stage are still alive to pass data
- Communication between Lambda functions
- Amazon's Simple Queue Service (SQS)
 - highly-scalable
 - reliable

- A Spark cluster running the Databricks Unified Analytics Platform (Standard)
- 11 m4.2xlarge instances (one driver and ten workers) 80 vCores
- 80 max concurrent invocations (~ 80 vCores)

- NYC taxi dataset (215 GB)
- Pick-up and drop-off dates/time, trip distance, payment type, tip amount
- Queries inspired by an exploratory data analysis task described in a popular blog post by Todd Schneider

- Q0: Line count
- Q1: Taxi drop-offs at the Goldman Sachs headquarters (hourly aggregation)

```
arr = src.map(lambda x: x.split(',')) \
.filter(lambda x: inside(x, goldman)) \
.map(lambda x: (get_hour(x), 1)) \
.reduceByKey(add, 30) \
.collect()
```


- Q2: Similar to Q1, but for Citigroup headquarters
- Q3: Goldman Sachs taxi drop-offs with tips greater than \$10
- Q4: Cash vs. credit card payments
- Q5: Yellow taxi vs. green taxi , monthly aggregation
- Q6: Effect of precipitation on taxi trips

	Query Latency (s)			Estimated Cost (USD)		
	Flint	PySpark	Spark	Flint	PySpark	Spark
0	101 [93 - 109]	211	188	0.20	0.41	0.37
1	190 [186 - 197]	316	189	0.59	0.61	0.37
2	203 [201 - 205]	314	187	0.68	0.61	0.36
3	165 [161 - 169]	312	188	0.48	0.61	0.36
4	132 [122 - 142]	225	189	0.33	0.44	0.37
5	159 [142 - 177]	312	189	0.45	0.60	0.37
6	277 [272 - 281]	337	191	0.56	0.66	0.37

TABLE I QUERY LATENCY AND COST COMPARISONS.

- Q1: Taxi drop-offs at the Goldman Sachs headquarters (hourly aggregation)
- Q3: Goldman Sachs taxi drop-offs with tips greater than \$10 tradeoff of concurrency between the latency and the cost

- Most serverless platforms currently have several limitations
 - Memory size (e.g. 3008 MB for AWS)
 - Execution time limitation (5 ~ 9 minutes)
 - Cold start problem

Figure 3.4: PySpark internals on standard Spark cluster [13]. Workers rely on Java/Scala Spark running on JVM

Other constraints

- Memory (3008 MB)
- Request size: 6 MB
 - Metadata
- Response size: 6 MB
 - Collect

Related Work

o Iris:

- The origin of Flint (A course project, UWaterloo, Fall 2016)
- Distributed computation framework supporting a subset of Spark API
- In-browser data analytics backed by serverless backend

o Amazon Athena

- Per-query pricing with zero idle costs
- o Only supports SQL
- Presto distributed SQL engine
- Databricks Serverless
 - Automatically managed pools of cloud resources
 - auto-configured & auto-scaled

Related Work

- o PyWren
 - Framework built from scratch on top of serverless compute functions and persistent storage
- Qubole Spark on Serverless
 - Ported the existing Spark executor infrastructure onto AWS Lambda, whereas Flint is a from-scratch implementation
 - o Communication model
 - o AWS Lambda limitations

Future Work

- Intensive shuffling tasks
- Robustness
- Higher level libraries (e.g. MLlib)