
Serverless Data Analytics with Flint

YOUNGBIN KIM AND JIMMY LIN

Large-scale analytical data
processing

o Spark adoption is booming

o Many use cases

Large-scale analytical data
processing

o Spark adoption is booming
o Many use cases
=> Requirement: Pre-installed on a cluster before they can be used for
analytics

◦ On-premise data center or cluster of virtual instances in the cloud

Large-scale analytical data
processing
o Problem: Cluster management can be difficult
o monitoring the health of worker nodes
o troubleshoot a variety of issues
o fixing/replacing underperforming nodes

May not be feasible for many small startups/researchers with the
limited resources !

Large-scale analytical data
processing
o How about scaling?

Managed big data frameworks
o Current solution: Managed big data frameworks

o Example: Amazon Elastic Map Reduce (EMR)

o Advantages:

o Reduces the burden of cluster management

o Save costs (automatically terminated)

o Limitations:

o Time is wasted in cluster initialization/rescaling/teardown

o Need to choose the details of the managed cluster

o There are still management overheads & idle costs.

Serverless analytics
o Serverless analytics to the rescue!

Worker Node
Executor Cache

Task

Cluster Manager

Task

Worker Node
Executor Cache

Task Task

Flint

o Flint: prototype execution engine for serverless PySpark
o PySpark with serverless backend by simply specifying a config file
o No costs for idle capacity
o Simplicity
o Use cases: ad hoc analytics and exploratory data analysis

Flint architecture
o Spark tasks are executed in AWS Lambda
o Intermediate data are held in Amazon’s Simple Queue Service (SQS)
o Reuses as many existing Spark components as possible
oQuery planning and optimization
oMany different types of RDD transformations

Workflow

QueueQueue

Spark Context

Client

Flint
Scheduler
Backend

SQS

Flint
Executor

Flint
Executor

Output
Partition

Output
PartitionFinal Stage

Intermediate Stage

Flint
Executor LambdaFlint

Executor
Flint

Executor

Input
Partition S3

Input
Partition

Input
Partition

Amazon Web Services

Data Movement
Control Flow

Flint architecture

Flint architecture
o The Flint scheduler coordinates Flint executors to execute a

particular physical plan
oFunction registration
oQueue initialization
oSerialization
o Invocation using thread pool
oProcess the response from an executor

Flint executor
o Flint executor is a python process running inside an Amazon Lambda

function
oEach serverless compute function invocation processes a single task
oSimplifies the communication requirement between an executor

and a driver
oLess affected by the limitation of execution time

Remote storage for shuffling
◦ No permanent storage
◦ Small ephemeral disk space (~512 MB)
◦ Execution time limitation

=> Cannot guarantee the Flint executors from the previous stage are
still alive to pass data

◦ Communication between Lambda functions

◦ Amazon’s Simple Queue Service (SQS)
◦ highly-scalable
◦ reliable

Experimental Evaluation
◦ A Spark cluster running the Databricks Unified Analytics Platform

(Standard)
◦ 11 m4.2xlarge instances (one driver and ten workers) - 80 vCores
◦ 80 max concurrent invocations (~ 80 vCores)

Experimental Evaluation
◦ NYC taxi dataset (215 GB)
◦ Pick-up and drop-off dates/time, trip distance, payment type, tip

amount
◦ Queries inspired by an exploratory data analysis task described in a

popular blog post by Todd Schneider

Experimental Evaluation
◦ Q0: Line count
◦ Q1: Taxi drop-offs at the Goldman Sachs headquarters (hourly

aggregation)

Experimental Evaluation

◦ Q2: Similar to Q1, but for Citigroup headquarters
◦ Q3: Goldman Sachs taxi drop-offs with tips greater than $10
◦ Q4: Cash vs. credit card payments
◦ Q5: Yellow taxi vs. green taxi , monthly aggregation
◦ Q6: Effect of precipitation on taxi trips

Experimental Evaluation

Experimental Evaluation
• Q1: Taxi drop-offs at the Goldman Sachs headquarters (hourly aggregation)
• Q3: Goldman Sachs taxi drop-offs with tips greater than $10
tradeoff of concurrency between the latency and the cost

Lambda Limitations
◦ Most serverless platforms currently have several limitations

◦ Memory size (e.g. 3008 MB for AWS)
◦ Execution time limitation (5 ~ 9 minutes)
◦ Cold start problem

Record Record

Record

Record

Record

Record

Record

Record

Record

Record

Record

Record

Timeout

Input

Processed by another
executor

Driver

{ bucket: ...
, range: 0-1000, …}

{ status: incomplete, range: 0-719, …}

Record

Record

Record

Record
{ bucket: ..., range: 720-1000, …}

{ status: complete, ...}

Lambda Limitations
Execution time limitation

Lambda Limitations

Lambda Limitations
Other constraints
◦ Memory (3008 MB)
◦ Request size: 6 MB

◦ Metadata
◦ Response size: 6 MB

◦ Collect

Related Work
o Iris:
o The origin of Flint (A course project, UWaterloo, Fall 2016)
o Distributed computation framework supporting a subset of Spark API

o In-browser data analytics backed by serverless backend

o Amazon Athena
o Per-query pricing with zero idle costs
o Only supports SQL

o Presto distributed SQL engine

o Databricks Serverless
o Automatically managed pools of cloud resources

◦ auto-configured & auto-scaled

Related Work
o PyWren

◦ Framework built from scratch on top of serverless compute
functions and persistent storage

o Qubole Spark on Serverless
o Ported the existing Spark executor infrastructure onto AWS

Lambda, whereas Flint is a from-scratch implementation
oCommunication model
oAWS Lambda limitations

Future Work
◦ Intensive shuffling tasks
◦ Robustness
◦ Higher level libraries (e.g. MLlib)

