Challenges for Scheduling Scientific
Workflows on Cloud Functions

Joanna Kijak, Piotr Martyna, Maciej Pawlik, Bartosz Balis
and Maciej Malawski

Department of Computer Science,
AGH University of Science and Technology
al. Mickiewicza 30, 30-059 Krakow, Poland

ENVIRONMENTS
T E A M

http://dice.cyfronet.pl

@ DISTRIBUTED
Qg COMPUTING

[Outline

= Motivation: scientific workflows in clouds
" Experiments with HyperFlow

= Scheduling challenges

= Experiments with SDBWS algorithm

= Results on AWS Lambda

= Conclusions

DICE Team

AGH ° Investigationof methods for building complex scientific collaborative applications
* Elaboration of environments and tools for e-Science
* Integration of large-scale distributed computing infrastructures
* Knowledge-based approach to services, components, and their semantic composition

AGH University of Science and Technology (1919)

16 faculties, 36000 students; 4000 employees
http://www.agh.edu.pl/en

N

Academlc Computer Centre Faculty of Computer Science, Electronics and Other 15

CYFRONET AGH (1973) m o Telecommunications (2012) faculties
%‘ c-.. F;nonm 120 employees = 2000 students, 200 employees

http://www.cyfronet.pl/en/

http://www.iet.agh.edu.pl/

v

Department of Computer Science AGH (1980)

h B8ingy,, :
DI RIBUTED HINFORMATYKA 1T TTTITT
COMPUTING B e Creein ftobern Mk TITRT
Qg ENleDNMENTS 800 students, 70 employees IUEBREETezngas 1,
http://www.ki.agh.edu.pl/uk/index.htm “INIeE s jANBEEER |

htto://dlce.cvfronet.ol

mJJ Motivation: Scientific Workflows

lll

AGH

= Astronomy, Geophysics, Genomics, Early Warning
Systems ...

= Workflow = graph of tasks and dependencies,
usually directed acyclic graph (DAG)
= @Granularity of tasks
— Large tasks (hours, days)
— Smalltasks (seconds, minutes)

ExtractSGT . SeismogramSynthesis

ZipSeis PeakValCalcOkaya ZipPSA

mmm Infrastructure — from clusters to
s clouds

= Traditional HPC clusters in computmg centers

— Job scheduling
systems

— Local storage

" Gridsto Clouds
— Infrastructure as a service
— Globally distributed
— Virtual machines (VMs)
— On-demand
— Cost in SS per time unit

mmﬂ Workflow execution model in
i (traditional) clouds

= Workflow engine manages the tasks Traditional
and dependencies model

"= Queueis used to dispatchready ‘Q)
tasks to the workers

= Worker nodes are deployedin
Virtual Machines in the cloud

" Cloud storage such as Amazon S3 is Queue
used for data exchange
Workers

= Examples - -
— Pegasus, Kepler, Triana, Pgrade,

Askalon, ...
— HyperFlow (AGH Krakow) \&Zorage

Engine

So HyperFlow

Lightweight workflow programming and execution

AGH environment developed at AGH

App

| executables
| =

Programming language ecosystem

Activity f;

HF Executor

|
) |

A

i HyperFl
neder o g (ST “

community
___________________________ | Activity f,
Wf graph : Executable workflow
. - ' description (JSON
Text editor [JSON| ! ' ption {)
(favorite IDE, or < | l:> ’ Web
. g Joa & o a i
generating script) — wohrfklf"l":;rj‘:;n ! gty f_3 Service
L | | =
WT activities : : .
| -
Workflow development | Workflow orchestration | Execution of workflow activities
Simple wf description (JSON) _ o :) i
. Advanced programming of wf activities (JavaScript) Running a workflow —simple command
::name": "P%otDataStatistics", . . . - Ilne Cllent
Prnaners -[vcgmputegtats,, function getPathWayByGene(ins, outs, config, cb) {
::ini"':l {::dzti.civ;"]i var geneld = ins.geneld.data[@], hflowc run <workflow dir>
ou S‘I stats.tx ur\l = —
“config": {
TR S _ <workflow dir> contains:
"args": "data.csv -o stats.txt” http({"timeout": 10000, "url": url }, . - .
) {} s function(error, response, body) { * File workflow. Jjson (Wf graph)
e e * File workflow.cfg (wf config)
II1I'I .:.A "S ats.Tx . N b 11 t
., bl })? (null, outs); * Optionally: file functions.js
e hes "mlot.ent, } (advanced workflow activities)
"args": "stats.txt" .
gt * Input files
B. Balis. Hyperflow: A model of computation, programming approach and enactment engine for complex 7

distributed workflows, FGCS 55: 147-162 (2016)

“]JJ New challenges — serverless
AGH architectures

" Serverless —no traditional VMs (servers)
" Composing of applications
from existing cloud services

— Typical example: web browser or moblle deV|ce
interacting directly with the cloud

= Examples of services:

— Databases: Firebase, DynamoDB
— Messaging: Google Pub/Sub
— Notification: Amazon SNS

= Cloud Functions:
— Run a custom code on the cloud infrastructure

Lll

AGH

= Examples:
— AWS Lambda
— Google Cloud Functions (beta)
— Azure Functions
— IBM Bluemix OpenWhisk

= Functional programming approach:

— Single function (operation)

— Not a long-running service or
process

— Transient, stateless

= |nfrastructure (execution
environment) responsible for:
— Startup
— Parallel execution
— Load balancing
— Autoscaling

OO

ity

deploy
— >

execute

—>

mj] Cloud Functions — good old RPC?

= Triggered by
— Direct HTTP request
— Change in cloud database
— File upload
— New item in the queue
— Scheduled at specific time

vy
@

= Developedin specific framework

— Node.js, Java, Python

— Custom code, libraries and binaries
can be uploaded

= Fine-grained pricing

— Per 100ms * GB (Lambda)

m JJJ Earlier results and scheduling
AGH problem

| HyperFIOW on HyperFlow Engine

. Decorated Execution
Server|eSS. Scheduler \:;rcl;fil;\i’:n @QJ %@D
— AWS, Google, —

IBM

" Benchmarking
of cloud

\ 4

. Function Function
functions: -
— AWS, Google ———
¢ ! Storage
Azure, IBM _

M. Malawski, A. Gajek, A. Zima, and K. Figiela. Serverless execution of scientific workflows:

Experiments with hyperflow, aws lambda and google cloud functions, FGCS 2018

K. Figiela, A. Gajek, A.Zima, B. Obrok, M. Malawski: "Performance Evaluation of Heterogeneous Cloud
Functions", Concurrency and Computation Practice Experience, 2018 (accepted) 10
http://cloud-functions.icsragh.edu.pl/

M Scheduling challenges

= Resource selection: which task on which cloud
function type?

" Hybrid execution: which task on FaaS and which
on laaS?

" How to deal with performance variability of
infrastructure?

" What are the limits of concurrency that we can
expect?

= How to transfer data between tasks?

M Serverless Deadline-Budget
AGH Workflow Scheduling

= Adaptation of existing DBWS heuristic for serverless model
— Low complexity heuristic based on PEFT
— Uses VM model with hourly billing
= List scheduling heuristic algorithms, two phases:
— Task ranking / prioritization (not used here)
— Resource selection

= Assumes the knowledge of task runtime estimates on each
resource type

" Finds mapping between tasks and resources (cloud functions) to
meet the deadline constraint and tries to meet the budget
constraint

H. Arabnejad and J. G. Barbosa. List scheduling algorithm for heterogeneous systems by an
optimistic cost table.

M. Ghasemzadeh, H. Arabnejad,and J. G. Barbosa. Deadline-budget constrained scheduling
algorithm for scientific workflowsin a cloud environment.

_h
| o]
) . -.kx.
— —
n (]
S
.
FES

Step 1: Levels

Divide DAG into levels

MUJ Step 2: Task runtime estimates

AGH

u PrereC]UiSite to Function Type 1 Function Type 2
scheduling |
= Run the workflow o
on all resource
21 2 22 432 4 4.4
types N S~
= Homogenous Ca) ()
execution: VAN ' VAR
— Function 1 is faster VAN AN
N\

— Function 2 is slower

10 20

MJ Levels and sub-deadlines

" For each workflow level
compute the maximum
execution time

Levelgwecution — max {ETm(lx(tl)}
(=) 59.84 Hti)==J
------------ .-‘Z-"-'-_-ﬂ-.xi-----------a??zt o] .
D) = Divide the deadline into sub-
------------ W— deadlines proportionally for
(®) each level:
Levell,; = Level{)—LlJrDuser* Leveles’;“““o"}
Level

1<j'<l(tegit) execution

M Resource selection (1)

= Resource selection is based on the time and
COSt: . f* SDL(tcur) - FT(tcurvr)
szeQ (tcury T) — FT,, 0z (tcur) — FT,.in (tcu’r)

_ COStmax (tcur) o COSt(tCUTv T)
COStma:I; (tcur) — COStmin (tC’Uﬂ“)

*§

Costo(teur,T)

n TimeQ— how far is task finish time on resource
r from sub-deadline

" Costy—how cheaper it is from the most
expensive resource

| 1 if FT (b, 7) < Spr(tour
Spr(teur) = {Level%L\l(ti) == j} £ = { () pr(teur)

0 otherwise

M Resource selection (2)

= We select the resource which maximizes the quantity:
Q(teur,) = Timeg (teur, 7)x(1—Cp)+Costg(teur, r)*Cr

= Where Cy is a trade-off factor:
— Cost,,,— cost on cheapest resource Cp = Costiow(DAG)

— B, ..—user’s budget Buyser

user

" |t represents user preferences:
— Lower value means we prefer to pay more for faster execution
— Higher value means we prefer cheaper and slower solutions
" |dea:
— To finish as early as possible, and
— To find the cheapest resource

M] Sub-deadlines and resource

AGH allocation
= Result:
heterogeneous J,
execution /” e
= Resource PR g i\\ _______
| type1 12 13 14 12.24
performance:
— Function 1 is faster b e
— Function 2 isslower “&‘ ___________
type 2 16 iF 42 24
____________ _\Y‘_‘_?/____________

ts 50.84

Schedule

Schedule

Schedule

0 4.5 12.24 3774
) 94 24.4

4254

59.84

21

Schedule

12.24 3774
244 304

4254

59.84

22

AL
=
O
Q
c
O
N

AGH

59.84

4254

3774

12.24

4.5

23

MJ Tests on AWS Lambda

= Montage workflow, 43 tasks

= Function size: 256,512, 1024,
1536 MB

= Execution times estimated based
on pre-runs on homogeneous
resources

" Limits adjusted to fit between
minimum and maximum
measured values

= Take into account the delays of
task execution:

— the makespan used to calculate the
sub-deadlines includes all the
overheads measured during pre-
runs

Task

m Experiment 1

—
40- -—
—)
—]
—]
—]
—
30- — 1536
- -
—
—
—
50- — 1024
—
—
2
[
— 512
10-
—
—
—
—
—
—
O- [} [} [} [}
0 5 10 15

Time in seconds

= Deadline: 18,6s (short)
= Budget: $0,00086 (small)
— result: faster resources selected

real — AWS Lambda execution, sdbws —ideal case (no delays)

40 -

(%)
§o)
c
(o)
o
0]
1)
£
[0)
£ 20-
| I
sdbws 1536 1024 real 5 256
Function type
0.00100 -
0.00075 -
@
©
o
o
c 0.00050 -
(O]
O
o
0.00025 -
0.00000 -

L] L] L] L] L]
sdbws 1536 1024 real 512 256

Function type
yp 55

Time in seconds

@M Experiment 2 III
B A |

| |
E 1536 1024 sdbws real
é E Function type
= 0.00100-
| |
||
|1
| |
= 512
10—
— 0.00075 -
[]
| (7]
[1] —
|] ©
| =
| | (@)
O L L] L] L] -O
0 10 20 £ 0:000504
Time in seconds 3
a
0.00025 -

e Deadline: 26,7s (medium)
* Budget: S0,00094 (large) £.00000.

1536 1024 sdbws real

— result: more slower resources selected _
Function type 26

m M Experiment 3

AGH

-
_-
40- —-—
—
—
—
—
]
—
30- —— 1536
- "
—
—
X —
@ — 1024
—
= 20- =
E—
;— 512
E— 256
10- HE——
—
—
—
—
—
—
[
—
0- L] L] L]
0 10 20

Time in seconds

* Deadline: 42,8s (large)
* Budget: SO,00086 (small)
— result: slower resources selected

40-

20- III
o-lI

1536 1024 sdows 512 real 256
Function type

0.00100 -
0.00075 -

0.00050 -

0.00025 -

0.00000 -

1536 1024 sdbws 512 reaI
Function type

Time in seconds

Price in dollars

27

M Conclusions

= Serverless and other highly-elastic infrastructures are

interesting options for running high-throughput scientific
workflows

= Serverless provisioning model are changing the game of
resource management — but there still some decisions to
make!

= Experiments with SDBWS show that heterogeneous
execution may have advantages, but more tests are needed
* Cloud functions are heterogeneous
— Technologies, APIs

— Resource management policies (over/under provisioning)
— Performance variations and guarantees

M] Future Work

Evaluation of parallelism limits and influence

of delays
Combined FaaS-laa$S execution model
Key parameter: elasticity Hybrid
— How quickly the infrastructure responds to the
changes in workload demand ‘Q reine

— How fine-grained pricing can be?
— Granularity of tasks vs. granularity of resources
Example questions:

— Which classes of tasks/workflows are suitable for - oridee
. Wworke
such infrastructures? Workers

— How to dispatch tasks to various infrastructures?

— How much costs can we actually save when Storage
using such resources (e.g. for tight deadlines/high
levels of parallelism)?

Queue

DICE Team at AGH &
Cyfronet

— Marian Bubak, Piotr

Nowakowski, Bartosz Balis,

Tomasz Gubata, Maciej
Pawlik, Marek Kasztelnik,
Bartosz Wilk,

Jan Meizner, Kamil Figiela

Collaboration
— USC/ISI:

 Ewa Deelman & Pegasus
Team

— Notre Dame:
e Jarek Nabrzyski

“m Thank you!

Projects & Grants

— National Science Center

(PL)
References:
— HyperFlow:

https://github.com/dice-

cyfronet/hyperflow/

— DICE Team:
http://dice.cyfronet.pl

DISTRIBUTED

COMPUTING
ENVIRONIVIENTS
A M

oo
S

30

d

Backup slides

M]JJ Detailed Google Cloud Functions
AGH Performance Results

. G I
= Functions oogle
10000 -
1000 - E
often run 100- S
much 10000 N -
10- 3 RAM in MB
faster than i0- e

expected

count
4

10000 -
1000~ . 256
10~ rl_l_h'l—n- _ _ 512
1024
ot ;Wmﬂ%
1000 - 2048
100 -
often? . ——

About 5% g
times.

7201

870¢

10 -
] 1 : l
0 20 40 e
Time in seconds

32

Cost in dollars per 100 ms

Cost in dollars per task

|

“]JJ Cost analysis

AGH

0.000003 -
| = List price vs.
RAM in MB .
0 000002 128 price/performance
| | 256
=j;; = Different models:
B i F u 1536 — AWS — proportional
2048
— |IBM —invariant
0.000000 - —

AWS azre Gosgle B — Google: mixed

provider

0.00020 - » (1024] - For Azure we
' & assume 1024 MB

0.00015 - - RAM in MB
a AWS
“‘- 128 .Azure
0.00010- °* = « 512 » | 256 . .
- .Google
a IBM
512
0.00005 -

1 1 1 1 1
10 20 30 40 50

Execution time in seconds 33

lllmlJJ Cost analysis

AGH

0.00020 - '
" [1024]

4
0
£ 0.00015 - [2048] RAM in MB
8 a aws
[B
S 000010~ \- (256 * (128 14 Google
"U%) .lBI\/I
8 0.00005 - -

(128]

]

10 20 30 40 50
Execution time in seconds

34

M References

[1] H. Arabnejad and J. G. Barbosa. List scheduling algorithm for heterogeneous
systems by an optimistic cost table.

[2] M. Ghasemzadeh, H. Arabnejad, and J. G. Barbosa. Deadline-budget constrained
scheduling algorithm for scientific workflows in a cloud environment.

[3] A. llyushkin, B. Ghit, and D. Epema. Scheduling workloads of workflows with
unknown task runtimes.

[4] M. Malawski, K. Figiela, M. Bubak, E. Deelman, and J. Nabrzyski. Scheduling
multilevel deadline-constrained scientific workflows on clouds based on cost
optimization.

[5] M. Malawski, K. Figiela, A. Gajek, and A. Zima. Benchmarking heterogeneous
cloud functions.

[6] M. Malawski, K. Figiela, and J. Nabrzyski. Cost minimization for computational
applications on hybrid cloud infrastructures.

[7] M. Malawski, A. Gajek, A. Zima, and K. Figiela. Serverless execution of scientific
workflows: Experiments with hyperflow, aws lambda and google cloud functions.
[8] M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski. Algorithms for cost- and
deadline-constrained provisioning for scientific workflow ensembles in iaas clouds.
[9] B. Balis. Hyperflow: A model of computation, programming approach and
enactment engine for complex distributed workflows

