
Challenges for Scheduling Scientific
Workflows on Cloud Functions

Joanna Kijak, Piotr Martyna, Maciej Pawlik, Bartosz Balis
and Maciej Malawski

Department of Computer Science,
AGH University of Science and Technology
al. Mickiewicza 30, 30-059 Kraków, Poland

http://dice.cyfronet.pl

Outline

▪ Motivation: scientific workflows in clouds

▪ Experiments with HyperFlow

▪ Scheduling challenges

▪ Experiments with SDBWS algorithm

▪ Results on AWS Lambda

▪ Conclusions

2

DICE Team

Academic Computer Centre
CYFRONET AGH (1973)

120 employees

http://www.cyfronet.pl/en/

Department of Computer Science AGH (1980)

800 students, 70 employees
http://www.ki.agh.edu.pl/uk/index.htm

Faculty of Computer Science, Electronics and
Telecommunications (2012)

2000 students, 200 employees

http://www.iet.agh.edu.pl/

AGH University of Science and Technology (1919)

16 faculties, 36000 students; 4000 employees
http://www.agh.edu.pl/en

Other 15
faculties

http://dice.cyfronet.pl

• Investigation of methods for building complex scientific collaborative applications
• Elaboration of environments and tools for e-Science
• Integration of large-scale distributed computing infrastructures
• Knowledge-based approach to services, components, and their semantic composition

3

Motivation: Scientific Workflows

▪ Astronomy, Geophysics, Genomics, Early Warning
Systems …

▪ Workflow = graph of tasks and dependencies,
usually directed acyclic graph (DAG)

▪ Granularity of tasks
– Large tasks (hours, days)

– Small tasks (seconds, minutes)

4

Infrastructure – from clusters to
clouds

▪ Traditional HPC clusters in computing centers
– Job scheduling

systems

– Local storage

▪ Grids to Clouds
– Infrastructure as a service

– Globally distributed

– Virtual machines (VMs)

– On-demand

– Cost in $$ per time unit

5

Workflow execution model in
(traditional) clouds

▪ Workflow engine manages the tasks
and dependencies

▪ Queue is used to dispatch ready
tasks to the workers

▪ Worker nodes are deployed in
Virtual Machines in the cloud

▪ Cloud storage such as Amazon S3 is
used for data exchange

▪ Examples
– Pegasus, Kepler, Triana, Pgrade,

Askalon, …
– HyperFlow (AGH Krakow)

Engine

Queue

VM VMVM

Traditional
model

Storage

Workers

6

Programming language ecosystem

Execution of workflow activitiesWorkflow orchestration

HyperFlow
Engine Activity f1

Activity f2

Activity f3

Workflow development

Text editor
(favorite IDE, or

generating script)

Executable Wf
Description (JSON)

Executable workflow
description (JSON)

f1

f2

f3

community

Wf graph

Wf activities

VM

App
executables

HF Executor

Proxy
cert.

hflowc run

workflow.json

Lightweight workflow programming and execution
environment developed at AGH

function getPathWayByGene(ins, outs, config, cb) {
var geneId = ins.geneId.data[0],

url = ...

http({"timeout": 10000, "url": url },
function(error, response, body) {
...
cb(null, outs);

});
}

Simple wf description (JSON)
Advanced programming of wf activities (JavaScript) Running a workflow – simple command

line client

hflowc run <workflow_dir>

Local commands

Web
Service

HyperFlow

<workflow_dir> contains:

• File workflow.json (wf graph)
• File workflow.cfg (wf config)
• Optionally: file functions.js

(advanced workflow activities)
• Input files

7B. Baliś. Hyperflow: A model of computation, programming approach and enactment engine for complex
distributed workflows, FGCS 55: 147-162 (2016)

New challenges – serverless
architectures

▪ Serverless – no traditional VMs (servers)
▪ Composing of applications

from existing cloud services
– Typical example: web browser or mobile device

interacting directly with the cloud

▪ Examples of services:
– Databases: Firebase, DynamoDB
– Messaging: Google Pub/Sub
– Notification: Amazon SNS

▪ Cloud Functions:
– Run a custom code on the cloud infrastructure

8

Cloud Functions – good old RPC?

▪ Examples:
– AWS Lambda
– Google Cloud Functions (beta)
– Azure Functions
– IBM Bluemix OpenWhisk

▪ Functional programming approach:
– Single function (operation)
– Not a long-running service or

process
– Transient, stateless

▪ Infrastructure (execution
environment) responsible for:
– Startup
– Parallel execution
– Load balancing
– Autoscaling

▪ Triggered by
– Direct HTTP request
– Change in cloud database
– File upload
– New item in the queue
– Scheduled at specific time

▪ Developed in specific framework
– Node.js, Java, Python
– Custom code, libraries and binaries

can be uploaded

▪ Fine-grained pricing
– Per 100ms * GB (Lambda)

9

Cloud

Functions

deploy

execute

• M. Malawski, A. Gajek, A. Zima, and K. Figiela. Serverless execution of scientific workflows:
Experiments with hyperflow, aws lambda and google cloud functions, FGCS 2018

• K. Figiela, A. Gajek, A. Zima, B. Obrok, M. Malawski: "Performance Evaluation of Heterogeneous Cloud

Functions", Concurrency and Computation Practice Experience, 2018 (accepted)
• http://cloud-functions.icsr.agh.edu.pl/

Earlier results and scheduling
problem

▪ HyperFlow on
Serverless:
– AWS, Google,

IBM

▪ Benchmarking
of cloud
functions:
– AWS, Google,

Azure, IBM

10

?

Scheduling challenges

▪ Resource selection: which task on which cloud
function type?

▪ Hybrid execution: which task on FaaS and which
on IaaS?

▪ How to deal with performance variability of
infrastructure?

▪ What are the limits of concurrency that we can
expect?

▪ How to transfer data between tasks?

11

Serverless Deadline-Budget
Workflow Scheduling

▪ Adaptation of existing DBWS heuristic for serverless model
– Low complexity heuristic based on PEFT
– Uses VM model with hourly billing

▪ List scheduling heuristic algorithms, two phases:
– Task ranking / prioritization (not used here)
– Resource selection

▪ Assumes the knowledge of task runtime estimates on each
resource type

▪ Finds mapping between tasks and resources (cloud functions) to
meet the deadline constraint and tries to meet the budget
constraint

H. Arabnejad and J. G. Barbosa. List scheduling algorithm for heterogeneous systems by an
optimistic cost table.
M. Ghasemzadeh, H. Arabnejad, and J. G. Barbosa. Deadline-budget constrained scheduling
algorithm for scientific workflows in a cloud environment.

12

Step 1: Levels

Divide DAG into levels

13

Step 2: Task runtime estimates

▪ Prerequisite to
scheduling

▪ Run the workflow
on all resource
types

▪ Homogenous
execution:

– Function 1 is faster

– Function 2 is slower

14

Levels and sub-deadlines

▪ For each workflow level
compute the maximum
execution time

▪ Divide the deadline into sub-
deadlines proportionally for
each level:

15

Resource selection (1)

▪ Resource selection is based on the time and
cost:

▪ TimeQ – how far is task finish time on resource
r from sub-deadline

▪ CostQ – how cheaper it is from the most
expensive resource

16

Resource selection (2)

▪ We select the resource which maximizes the quantity:

▪ Where CF is a trade-off factor:
– Costlow – cost on cheapest resource
– Buser – user’s budget

▪ It represents user preferences:
– Lower value means we prefer to pay more for faster execution
– Higher value means we prefer cheaper and slower solutions

▪ Idea:
– To finish as early as possible, and
– To find the cheapest resource

17

Sub-deadlines and resource
allocation

▪ Result:
heterogeneous
execution

▪ Resource
performance:

– Function 1 is faster

– Function 2 is slower

18

Schedule

19

Schedule

20

Schedule

21

Schedule

22

Schedule

23

Tests on AWS Lambda

▪ Montage workflow, 43 tasks
▪ Function size: 256, 512, 1024,

1536 MB
▪ Execution times estimated based

on pre-runs on homogeneous
resources

▪ Limits adjusted to fit between
minimum and maximum
measured values

▪ Take into account the delays of
task execution:
– the makespan used to calculate the

sub-deadlines includes all the
overheads measured during pre-
runs

24

Experiment 1

25

▪ Deadline: 18,6s (short)
▪ Budget: $0,00086 (small)

→ result: faster resources selected

real – AWS Lambda execution, sdbws – ideal case (no delays)

Experiment 2

• Deadline: 26,7s (medium)
• Budget: $0,00094 (large)
→ result: more slower resources selected

26

Experiment 3

• Deadline: 42,8s (large)
• Budget: $0,00086 (small)
→ result: slower resources selected

27

Conclusions

▪ Serverless and other highly-elastic infrastructures are
interesting options for running high-throughput scientific
workflows

▪ Serverless provisioning model are changing the game of
resource management – but there still some decisions to
make!

▪ Experiments with SDBWS show that heterogeneous
execution may have advantages, but more tests are needed

▪ Cloud functions are heterogeneous
– Technologies, APIs
– Resource management policies (over/under provisioning)
– Performance variations and guarantees

28

Future Work

▪ Evaluation of parallelism limits and influence
of delays

▪ Combined FaaS-IaaS execution model
▪ Key parameter: elasticity

– How quickly the infrastructure responds to the
changes in workload demand

– How fine-grained pricing can be?
– Granularity of tasks vs. granularity of resources

▪ Example questions:
– Which classes of tasks/workflows are suitable for

such infrastructures?
– How to dispatch tasks to various infrastructures?
– How much costs can we actually save when

using such resources (e.g. for tight deadlines/high
levels of parallelism)?

29

Engine

Queue

VMVM
Workers

Hybrid
model

Cloud Functions

Bridge
worker

Storage

Thank you!

• DICE Team at AGH &
Cyfronet
– Marian Bubak, Piotr

Nowakowski, Bartosz Baliś,
Tomasz Gubała, Maciej
Pawlik, Marek Kasztelnik,
Bartosz Wilk,
Jan Meizner, Kamil Figiela

• Collaboration
– USC/ISI:

• Ewa Deelman & Pegasus
Team

– Notre Dame:
• Jarek Nabrzyski

• Projects & Grants
– National Science Center

(PL)

• References:
– HyperFlow:

https://github.com/dice-
cyfronet/hyperflow/

– DICE Team:
http://dice.cyfronet.pl

30

HyperFlow

Backup slides

Detailed Google Cloud Functions
Performance Results

▪ Functions
often run
much
faster than
expected

▪ How
often?
About 5%
times.

32

1
2
8

2
5

6
5

1
2

1
0

2
4

2
0

4
8

0 20 40 60

10
100

1000
10000

10
100

1000
10000

10
100

1000
10000

10
100

1000
10000

10
100

1000
10000

Time in seconds

c
o

u
n

t

RAM in MB

128

256

512

1024

2048

Google

Cost analysis

▪ List price vs.
price/performance

▪ Different models:

– AWS – proportional

– IBM – invariant

– Google: mixed

▪ For Azure we
assume 1024 MB

33

Kamil Figiela ET AL 15

0.000000

0.000001

0.000002

0.000003

AWS Azure Google IBM

provider

C
o

s
t

in
 d

o
lla

rs
 p

e
r

1
0
0

 m
s

RAM in MB

128

256

512

1024

1536

2048

FIGURE11 Price for cloud function per 100 millisecond depending on RAM. For Azure we assumed the cost of 1024MB.

0.00000

0.00005

0.00010

0.00015

0.00020

AWS Azure Google IBM

provider

C
o

s
t

in
 d

o
lla

rs
 p

e
r

ta
s
k RAM in MB

128

256

512

1024

1536

2048

FIGURE12 Costs for execution of single task in our integer performance benchmark, for all cloud function providers depending on RAM.For Azure

we assumed the cost of 1024MB.

●●●●●

●

●

●

●

●

●●

●

●

128

256512

1024

1536

128

256

512

128

256

5121024

2048

1024

0.00005

0.00010

0.00015

0.00020

10 20 30 40 50

Execution time in seconds

C
o
s
t

in
 d

o
lla

rs
 p

e
r

ta
s
k

RAM in MB

●a

●a

●a

●a

AWS

Azure

Google

IBM

FIGURE 13 Comparison of cost vs. execution time of single task in our integer performance benchmark, for all cloud function providers depending

on RAM.For Azure we assumed the cost of 1024MB.

29%were handled with E5-2666 v3 (2.90GHz). Remaining requests were handled with E5-2676 v3 (2.40GHz) (5%) and E5-2670 v2 (2.50GHz) (1%).

Those CPUs support TurboBoost and some cores may be running at slightly higher frequency than base. We did not observe significant correlation

between CPU model and function performance though.

Kamil Figiela ET AL 15

0.000000

0.000001

0.000002

0.000003

AWS Azure Google IBM

provider

C
o

s
t

in
 d

o
lla

rs
 p

e
r

1
0
0

 m
s

RAM in MB

128

256

512

1024

1536

2048

FIGURE11 Price for cloud function per 100 millisecond depending on RAM. For Azure we assumed the cost of 1024MB.

0.00000

0.00005

0.00010

0.00015

0.00020

AWS Azure Google IBM

provider

C
o

s
t
in

 d
o
lla

rs
 p

e
r

ta
s
k RAM in MB

128

256

512

1024

1536

2048

FIGURE12 Costs for execution of single task in our integer performance benchmark, for all cloud function providers depending on RAM.For Azure

we assumed the cost of 1024MB.

●●●●●

●

●

●

●

●

●●

●

●

128

256512

1024

1536

128

256

512

128

256

512
1024

2048

1024

0.00005

0.00010

0.00015

0.00020

10 20 30 40 50

Execution time in seconds

C
o

s
t

in
 d

o
lla

rs
 p

e
r

ta
s
k

RAM in MB

●a

●a

●a

●a

AWS

Azure

Google

IBM

FIGURE 13 Comparison of cost vs. execution time of single task in our integer performance benchmark, for all cloud function providers depending

on RAM. For Azure we assumed the cost of 1024MB.

29%were handled with E5-2666 v3 (2.90GHz). Remaining requests were handled with E5-2676 v3 (2.40GHz) (5%) and E5-2670 v2 (2.50GHz) (1%).

Those CPUs support TurboBoost and some cores may be running at slightly higher frequency than base. We did not observe significant correlation

between CPU model and function performance though.

Cost analysis

34

Kamil Figiela ET AL 15

0.000000

0.000001

0.000002

0.000003

AWS Azure Google IBM

provider

C
o

s
t

in
 d

o
lla

rs
 p

e
r

1
0
0

 m
s

RAM in MB

128

256

512

1024

1536

2048

FIGURE11 Price for cloud function per 100 millisecond depending on RAM. For Azure we assumed the cost of 1024MB.

0.00000

0.00005

0.00010

0.00015

0.00020

AWS Azure Google IBM

provider

C
o

s
t

in
 d

o
lla

rs
 p

e
r

ta
s
k RAM in MB

128

256

512

1024

1536

2048

FIGURE12 Costs for execution of single task in our integer performance benchmark, for all cloud function providers depending on RAM.For Azure

we assumed the cost of 1024MB.

●●●●●

●

●

●

●

●

●●

●

●

128

256512

1024

1536

128

256

512

128

256

5121024

2048

1024

0.00005

0.00010

0.00015

0.00020

10 20 30 40 50

Execution time in seconds

C
o
s
t

in
 d

o
lla

rs
 p

e
r

ta
s
k

RAM in MB

●a

●a

●a

●a

AWS

Azure

Google

IBM

FIGURE 13 Comparison of cost vs. execution time of single task in our integer performance benchmark, for all cloud function providers depending

on RAM.For Azure we assumed the cost of 1024MB.

29%were handled with E5-2666 v3 (2.90GHz). Remaining requests were handled with E5-2676 v3 (2.40GHz) (5%) and E5-2670 v2 (2.50GHz) (1%).

Those CPUs support TurboBoost and some cores may be running at slightly higher frequency than base. We did not observe significant correlation

between CPU model and function performance though.

References

[1] H. Arabnejad and J. G. Barbosa. List scheduling algorithm for heterogeneous
systems by an optimistic cost table.
[2] M. Ghasemzadeh, H. Arabnejad, and J. G. Barbosa. Deadline-budget constrained
scheduling algorithm for scientific workflows in a cloud environment.
[3] A. Ilyushkin, B. Ghit, and D. Epema. Scheduling workloads of workflows with
unknown task runtimes.
[4] M. Malawski, K. Figiela, M. Bubak, E. Deelman, and J. Nabrzyski. Scheduling
multilevel deadline-constrained scientific workflows on clouds based on cost
optimization.
[5] M. Malawski, K. Figiela, A. Gajek, and A. Zima. Benchmarking heterogeneous
cloud functions.
[6] M. Malawski, K. Figiela, and J. Nabrzyski. Cost minimization for computational
applications on hybrid cloud infrastructures.
[7] M. Malawski, A. Gajek, A. Zima, and K. Figiela. Serverless execution of scientific
workflows: Experiments with hyperflow, aws lambda and google cloud functions.
[8] M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski. Algorithms for cost- and
deadline-constrained provisioning for scientific workflow ensembles in iaas clouds.
[9] B. Baliś. Hyperflow: A model of computation, programming approach and
enactment engine for complex distributed workflows

35

