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• Investigation of methods for building complex scientific collaborative applications
• Elaboration of environments and tools for e-Science
• Integration of large-scale distributed computing infrastructures
• Knowledge-based approach to services, components, and their semantic composition
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Motivation: Scientific Workflows

▪ Astronomy, Geophysics, Genomics, Early Warning 
Systems …

▪ Workflow = graph of tasks and dependencies, 
usually directed acyclic graph (DAG)

▪ Granularity of tasks
– Large tasks (hours, days)

– Small tasks (seconds, minutes)
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Infrastructure – from clusters to 
clouds

▪ Traditional HPC clusters in computing centers
– Job scheduling

systems

– Local storage

▪ Grids to Clouds
– Infrastructure as a service

– Globally distributed

– Virtual machines (VMs)

– On-demand

– Cost in $$ per time unit
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Workflow execution model in 
(traditional) clouds 

▪ Workflow engine manages the tasks 
and dependencies

▪ Queue is used to dispatch ready 
tasks to the workers

▪ Worker nodes are deployed in 
Virtual Machines in the cloud

▪ Cloud storage such as Amazon S3 is 
used for data exchange

▪ Examples
– Pegasus, Kepler, Triana, Pgrade, 

Askalon, …
– HyperFlow (AGH Krakow)

Engine

Queue

VM VMVM

Traditional 
model

Storage

Workers
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Programming language ecosystem

Execution of workflow activitiesWorkflow orchestration

HyperFlow
Engine Activity f1

Activity f2

Activity f3

Workflow development

Text editor 
(favorite IDE, or 

generating script)

Executable Wf 
Description (JSON)

Executable workflow 
description (JSON)

f1

f2

f3

community

Wf graph

Wf activities

VM

App 
executables

HF Executor

Proxy 
cert.

hflowc run 

workflow.json

Lightweight workflow programming and execution 
environment developed at AGH

function getPathWayByGene(ins, outs, config, cb) {    
var geneId = ins.geneId.data[0],        

url = ...

http({"timeout": 10000, "url": url },     
function(error, response, body) {        
...
cb(null, outs);    

});
}

Simple wf description (JSON)
Advanced programming of wf activities (JavaScript) Running a workflow – simple command 

line client

hflowc run <workflow_dir>

Local commands

Web 
Service

HyperFlow

<workflow_dir> contains:

• File workflow.json (wf graph)
• File workflow.cfg (wf config)
• Optionally: file functions.js

(advanced workflow activities)
• Input files

7B. Baliś. Hyperflow: A model of computation, programming approach and enactment engine for complex 
distributed workflows, FGCS 55: 147-162 (2016)



New challenges – serverless
architectures

▪ Serverless – no traditional VMs (servers)
▪ Composing of applications 

from existing cloud services
– Typical example: web browser or mobile device 

interacting directly with the cloud

▪ Examples of services:
– Databases: Firebase, DynamoDB
– Messaging: Google Pub/Sub
– Notification: Amazon SNS

▪ Cloud Functions:
– Run a custom code on the cloud infrastructure
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Cloud Functions – good old RPC?

▪ Examples: 
– AWS Lambda
– Google Cloud Functions (beta)
– Azure Functions
– IBM Bluemix OpenWhisk

▪ Functional programming approach:
– Single function (operation)
– Not a long-running service or 

process
– Transient, stateless

▪ Infrastructure (execution 
environment) responsible for:
– Startup
– Parallel execution
– Load balancing
– Autoscaling

▪ Triggered by
– Direct HTTP request
– Change in cloud database
– File upload
– New item in the queue
– Scheduled at specific time

▪ Developed in specific framework
– Node.js, Java, Python
– Custom code, libraries and binaries 

can be uploaded

▪ Fine-grained pricing
– Per 100ms * GB (Lambda)
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• M. Malawski, A. Gajek, A. Zima, and K. Figiela. Serverless execution of scientific workflows: 
Experiments with hyperflow, aws lambda and google cloud functions, FGCS 2018

• K. Figiela, A. Gajek, A. Zima, B. Obrok, M. Malawski: "Performance Evaluation of Heterogeneous Cloud 

Functions", Concurrency and Computation Practice Experience, 2018 (accepted)
• http://cloud-functions.icsr.agh.edu.pl/

Earlier results and scheduling 
problem

▪ HyperFlow on 
Serverless:
– AWS, Google, 

IBM

▪ Benchmarking 
of cloud 
functions:
– AWS, Google, 

Azure, IBM
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Scheduling challenges

▪ Resource selection: which task on which cloud 
function type? 

▪ Hybrid execution: which task on FaaS and which 
on IaaS? 

▪ How to deal with performance variability of 
infrastructure? 

▪ What are the limits of concurrency that we can 
expect? 

▪ How to transfer data between tasks? 
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Serverless Deadline-Budget 
Workflow Scheduling

▪ Adaptation of existing DBWS heuristic for serverless model
– Low complexity heuristic based on PEFT
– Uses VM model with hourly billing

▪ List scheduling heuristic algorithms, two phases:
– Task ranking / prioritization (not used here)
– Resource selection

▪ Assumes the knowledge of task runtime estimates on each 
resource type

▪ Finds mapping between tasks and resources (cloud functions) to 
meet the deadline constraint and tries to meet the budget 
constraint

H. Arabnejad and J. G. Barbosa. List scheduling  algorithm for heterogeneous  systems by an 
optimistic cost table.
M. Ghasemzadeh, H. Arabnejad, and J. G. Barbosa. Deadline-budget  constrained  scheduling  
algorithm for scientific workflows in a cloud environment.
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Step 1: Levels

Divide DAG into levels
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Step 2: Task runtime estimates

▪ Prerequisite to 
scheduling

▪ Run the workflow 
on all resource 
types

▪ Homogenous 
execution:

– Function 1 is faster

– Function 2 is slower
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Levels and sub-deadlines

▪ For each workflow level 
compute the maximum 
execution time

▪ Divide the deadline into sub-
deadlines proportionally for 
each level:
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Resource selection (1)

▪ Resource selection is based on the time and 
cost:

▪ TimeQ – how far is task finish time on resource 
r from sub-deadline

▪ CostQ – how cheaper it is from the most 
expensive resource
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Resource selection (2)

▪ We select the resource which maximizes the quantity:

▪ Where CF is a trade-off factor: 
– Costlow – cost on cheapest resource
– Buser – user’s budget 

▪ It represents user preferences:
– Lower value means we prefer to pay more for faster execution
– Higher value means we prefer cheaper and slower solutions

▪ Idea: 
– To finish as early as possible, and
– To find the cheapest resource
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Sub-deadlines and resource 
allocation

▪ Result: 
heterogeneous 
execution

▪ Resource 
performance:

– Function 1 is faster

– Function 2 is slower
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Schedule
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Tests on AWS Lambda

▪ Montage workflow, 43 tasks
▪ Function size: 256, 512, 1024, 

1536 MB
▪ Execution times estimated based 

on pre-runs on homogeneous 
resources

▪ Limits adjusted to fit between 
minimum and maximum 
measured values

▪ Take into account the delays of 
task execution:
– the makespan used to calculate the 

sub-deadlines includes all the 
overheads measured during pre-
runs
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Experiment 1
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▪ Deadline: 18,6s (short)
▪ Budget: $0,00086 (small)

→ result: faster resources selected

real – AWS Lambda execution, sdbws – ideal case (no delays)



Experiment 2

• Deadline: 26,7s (medium)
• Budget: $0,00094 (large)
→ result: more slower resources selected
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Experiment 3

• Deadline: 42,8s (large)
• Budget: $0,00086 (small)
→ result: slower resources selected
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Conclusions

▪ Serverless and other highly-elastic infrastructures are 
interesting options for running high-throughput scientific 
workflows

▪ Serverless provisioning model are changing the game of 
resource management – but there still some decisions to 
make!

▪ Experiments with SDBWS show that heterogeneous 
execution may have advantages, but more tests are needed

▪ Cloud functions are heterogeneous
– Technologies, APIs
– Resource management policies (over/under provisioning)
– Performance variations and guarantees
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Future Work

▪ Evaluation of parallelism limits and influence 
of delays

▪ Combined FaaS-IaaS execution model
▪ Key parameter: elasticity

– How quickly the infrastructure responds to the 
changes in workload demand

– How fine-grained pricing can be?
– Granularity of tasks vs. granularity of resources

▪ Example questions:
– Which classes of tasks/workflows are suitable for 

such infrastructures?
– How to dispatch tasks to various infrastructures?
– How much costs can we actually save when 

using such resources (e.g. for tight deadlines/high 
levels of parallelism)?
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Detailed Google Cloud Functions 
Performance Results

▪ Functions 
often run 
much 
faster than 
expected

▪ How 
often? 
About 5% 
times.
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Cost analysis

▪ List price vs. 
price/performance

▪ Different models:

– AWS – proportional

– IBM – invariant

– Google: mixed

▪ For Azure we 
assume 1024 MB
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FIGURE11 Price for cloud function per 100 millisecond depending on RAM. For Azure we assumed the cost of 1024MB.
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FIGURE12 Costs for execution of single task in our integer performance benchmark, for all cloud function providers depending on RAM.For Azure

we assumed the cost of 1024MB.
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FIGURE 13 Comparison of cost vs. execution time of single task in our integer performance benchmark, for all cloud function providers depending

on RAM.For Azure we assumed the cost of 1024MB.

29%were handled with E5-2666 v3 (2.90GHz). Remaining requests were handled with E5-2676 v3 (2.40GHz) (5%) and E5-2670 v2 (2.50GHz) (1%).

Those CPUs support TurboBoost and some cores may be running at slightly higher frequency than base. We did not observe significant correlation

between CPU model and function performance though.
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29%were handled with E5-2666 v3 (2.90GHz). Remaining requests were handled with E5-2676 v3 (2.40GHz) (5%) and E5-2670 v2 (2.50GHz) (1%).

Those CPUs support TurboBoost and some cores may be running at slightly higher frequency than base. We did not observe significant correlation

between CPU model and function performance though.



Cost analysis
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29%were handled with E5-2666 v3 (2.90GHz). Remaining requests were handled with E5-2676 v3 (2.40GHz) (5%) and E5-2670 v2 (2.50GHz) (1%).
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