Conquering Serverless

MANAGING THE HOLES IN THE SERVERLESS DEVELOPMENT LIFECYCLE

Chase Douglas, CTO, stackery.io
chase@stackery.io

@txase

-
=

STACKERY

SS STACKERY

PHB: We need a hew service to process
messages from our gizmos

You: (Oh man oh man, | think | can do this
with serverless, it's the new hotnhess!)

You: Sure, we can build that in half a day.

We Can Do It!

7r
‘.-

R -

772>
' ¢ .

¢
‘

/A.-.(m'fét.iﬂ

POST FES. IS TO FEB.20 WAR PRODUCTION CO-ORDINATING COMMITTEE

Hi. I’'m Alexa. I’'m so easy your 5 year old son could figure out

. . .
A 2

how to program me.

. A AR
' R R RALL
. R R R R
- N
’ "o
)
.

BUUUUUUUUUUUUUUUURP

amazon

—

SELF-HEALING SERVERLESS APPLICATIONS | PG2

The Promise:

AWS Lambda invokes your code only when
needed and automatically scales to support the
rate of incoming requests without requiring you

to configure anything. There 1s no limit to the

number of requests your code can handle.

AWS | LAMBDA FEATURES PAGE

SELF-HEALING SERVERLESS APPLICATIONS | PG3

The Reality:

| sometimes
AWS Lambda invokes your code-enly-when

| certain
needed and autematically scales-to Support the.
. . but . es
rate;ot Incoming 10Ut requiriig you

properl ever

toAconi\'{lgure anything. There isne limitsto the

archltecture
number of requests your-eede can handle.

AWS | LAMBDA EFEAT

(sugg ested' edlts)

SS STACKERY

Serverless Development Lifecycle Gaps

e Access And Permission Management
o Collaboration Mechanisms
o Testing

e Monitoring And Instrumentation

SS STACKERY

Access And Permission
Management

DANIEL
ANSELME L.

SS STACKERY

Access And Permission Management

Scenario: A serverless function that

1. Istriggered by an uploaded image to S3 Bucket
“uploads”

2. Resizes the image
3. Saves the image to S3 Bucket “resized”

4. Updates a record in DynamoDB table “resize_records”

SS STACKERY

Access And Permission Management

(& § | .
sam resize_records @
(o §

SS STACKERY

Access And Permission Management

Shouldn’t this just work?
Nope.

(And that’s a good thing)

Google

serverless permissions

Google Search I'm Feeling Lucky

SS STACKERY

Access And Permission Management

service: upload-to-s3-and-postprocess
frameworkVersion: ">=1.1.0"

custom:
bucket: <your-bucket-name>

provider:
name: aws
runtime: nodejs4.3

Access To Do Anything In

- Effect: Allow

— Every S3 Bucket In AWS

- §3:1x%x

Resource: "x" ACCOU nt!

functions:
postprocess:
handler: handler.postprocess
events:
- §3:
bucket: ${self:custom.bucket}
event: s3:0bjectCreated:x
rules:
- suffix: .png

SS STACKERY

Access And Permission Management

Need To Scope Access To Specific Actions

Need To Scope Access To Specific
Resources

SS STACKERY

Access And Permission Management

- Effect: Allow
- Action:
- s3:GetObject
- s3:PutObject
- Resource:
- arn:aws:s3:::uploads
— arn:aws:s3:::resized

SS STACKERY

Access And Permission Management

| Have To Do This For Every Function And
Resource?

How?

SS STACKERY

Access And Permission Management

Option A: Manual Generation And Provision
1. Developer Hand-Codes IAM Policies
2. Principal Architect Reviews Policies
3. DevOps Deploys Policies

4. You Can Finally Use Your Policy

SS STACKERY

Access And Permission Management

Option B: Let Everyone Do Whatever They
Want

SS STACKERY

Access And Permission Management

Option C: Use A Framework That
Automatically Generates Permissions

SS STACKERY

Access And Permission Management

. e resized @

s [resizer ‘

(& § | .
sam resize_records @
(o §

Automatically Generate
Permissions At Deployment
Time

SS STACKERY

Access And Permission Management

Framework-based permission management
enables:

Faster development
Less errors

Compliance benefits for the organization

Sa STACKERY

How Not to Be a Dick

Collaboration
Mechanisms

SS STACKERY

GitHub for teams

A better way to work together

GitHub brings teams together to work through problems, move ideas forward,
and learn from each other along the way.

Sign up your team

We're Done Here, Right?

SS STACKERY

Collaboration Mechanisms

Serverless is cheap enough for every developer to
have their own application instances

Serverless local development and testing is hard

| want all my developers to be able to provision into
my team’s shared AWS account

But resources require unique hames

SS STACKERY

Collaboration Mechanisms

Solution: Namespace resource names

SS STACKERY

Collaboration Mechanisms

Option A: Namespace Resources Manually

service: new-service
provider: aws
functions:
hello:
name: ${opt:stage}-hello
handler: handler.hello
world:
name: ${opt:stage}-world
handler: handler.world

SS STACKERY

Collaboration Mechanisms

Option B: Framework Namespaces
Automatically

Function Name: hello
ol

Environment Name: dev

AWS Lambda Name: dev-hello

Sa STACKERY

Collaboration Mechanisms

My Own
Environment

o

Sa STACKERY

“The Testing is a chilling and devious dystopian thriller char all fans
of The Hunger Games will simply devour.”

J\' WNATHAN .\1 ABERRY, New Yor® T imes Iaont -.\-.||-|:,; n_nh.u ol
»

Rot {‘ .{...‘H'l and Flevhy \'fl /7:-,-:.,'

Testing

TESTING

JOELLE CHARBONNEAU

SS STACKERY

Testing

Serverless Does Not Change Testing!

Serverless Changes How You Run Tests

SS STACKERY

Testing

Unit Tests: Same As Always
System Tests: 22??

Integration Tests: ?22?

SS STACKERY

Testing

System And Integration Tests: Two
Schools Of Thought

A: Always Test In The Cloud

B: Fake Services For Local Testing

SS STACKERY

Testing

Integration Tests In The Cloud

Pros: Faithful representation, possible
today

Cons: Slower, requires cloud access

SS STACKERY

Testing

Integration Tests Locally With Service Fakes
Pros: Faster, does not require cloud access

Cons: Skew in behavior vs cloud, not very well
supported today

Upstream projects are trying to make this possible/
easier (e.g. AWS SAM Local)

SS STACKERY

Testing

Integration Tests: Advice

(For Today Only!)

If application is only API endpoints +
Functions, do local tests

Otherwise, deploy into cloud and test

SS STACKERY

Testing

So How Do | Make A Test Environment In
The Cloud?

We Solved This Already With
Namespaced Resources!

SS STACKERY

Testing

With The Right Approach, Serverless Is
Just As Testable As Other Architectures

Sa STACKERY

PANOPTICON

‘ ‘ .) | \ ; v :\ A “ . —
“ \, 44 s ldd .
Monitoring And Trrnn -
d"|.| !' .i .—"-—‘L_J-.‘. .
‘_ll.ll B BR RO 13:1_ .
,,ll TH 1 sz;:-f:j_.__:]:r.l

Instrumentation uins =

Jeremy Bentham

SS STACKERY

Monitoring And Instrumentation

How We Do It Today
1. Organization picks a set of monitoring tools
2. Ask everyone to always instrument the same way
3. Pray

4. Draconian measures

SS STACKERY

Monitoring And Instrumentation

How We Should Do It
1. Pick a set of monitoring tools

2. Define instrumentation rules centrally

3. Framework auto-instruments every function

4. Cake

SS STACKERY

Monitoring And Instrumentation

How Can A Framework Auto-instrument?

SS STACKERY

Monitoring And Instrumentation

¢ index. js Raw

module.exports.handler = event => {
return event.x + event.y;

};

SS STACKERY

Monitoring And Instrumentation

<] instrumented.js Raw

const handler = require('./index').handler;

module.exparts.handler = async event => {
try {
// Try to run original handler
return Promise.resolve(handler(event));
} catch (err) {
// If an error occurred, report it to Rollbar
const rollbar = require('rollbar');

rollbar.init(process.env.ROLLBAR_TOKEN) ;

// Report to Rollbar and wait for completion
await new Promise(resolve => rollbar.handleError(err, () => resalve()));

// Re-=throw original error
throw err;

};

SS STACKERY

Monitoring And Instrumentation

Now Just Update The Handler:

index.handler => instrumented.handler

SS STACKERY

Monitoring And Instrumentation

Great Monitoring Solutions For Serverless

(Diatribe In person because this changes
quickly over time and | don’t want to be
called out for 2 year old slides)

SS STACKERY

Monitoring And Instrumentation

Metrics

SS STACKERY

Monitoring And Instrumentation

Logging

SS STACKERY

Monitoring And Instrumentation

Tracing

SS STACKERY

Monitoring And Instrumentation

Error Aggregation

SS STACKERY

Serverless Development Lifecycle Gaps

e Access And Permission Management
o Collaboration Mechanisms
o Testing

e Monitoring And Instrumentation

STACKERY

How

U Manage The Gaps?

LR ' !
S BT S AR L R s) ;
"R ey 1\Y6?"p"v'."¢'-ﬁ"ﬂ.‘\ R g S - ".ﬁ .,.; 2 , .
SERMET 2 LN R A Y . - PN PSR, -
ARTIABINTIWE A RS S oty ! T MIND, M ¢

I e — . S—— :Q: —— - - e e e . WA W S e a ——

s — —— e — — —h

— - - ———e . e & . —— - i - - - Ot e o P — . - — t— . -

e e e — - — ——

- : N et ﬂ?'.f.u,-,-:'“t..'.:.‘,, L e TR Y v G v " RO o o S
2 ,,:‘ - -y \f.'x"_fs’.“ . "u‘:‘._«rJ}' U-,’ am‘n-”u‘%. ' i vl R e m ’: ,.‘5 i

- ;. . o Sers 4 & - 4 5 v - . - " v
R N SRR S S RSN E S5 W I AT AW,
* N R St N~ LA R e Y e “h - oy . " .

, SR ot e T L2
~R . s by TEBAY R ’4,\'_& SROW ATV . o w. < . h
N P TR T RN A S R T -

Build All The Things Yourself

DOJATINTHE

TIES

SS STACKERY

Build All The Things Yourself

_é.‘_l the hi njj'!‘

O

SS STACKERY

Use A Toolkit That Does It For You

<
>

STACKERY

STACKERY

Thank you!

Chase Douglas, CTO @ Stackery.io
chase@stackery.io

@txase

