Conquering Serverless

MANAGING THE HOLES IN THE SERVERLESS DEVELOPMENT LIFECYCLE

Chase Douglas, CTO, stackery.io
chase@stackery.io
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PHB: We need a hew service to process
messages from our gizmos

You: (Oh man oh man, | think | can do this
with serverless, it's the new hotnhess!)

You: Sure, we can build that in half a day.



We Can Do It!
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Hi. I’'m Alexa. I’'m so easy your 5 year old son could figure out
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how to program me.
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SELF-HEALING SERVERLESS APPLICATIONS | PG2

The Promise:

AWS Lambda invokes your code only when
needed and automatically scales to support the
rate of incoming requests without requiring you

to configure anything. There 1s no limit to the

number of requests your code can handle.

AWS | LAMBDA FEATURES PAGE



SELF-HEALING SERVERLESS APPLICATIONS | PG3

The Reality:

| sometimes
AWS Lambda invokes your code-enly-when

| certain
needed and autematically scales-to Support the.
. . but . es
rate;ot Incoming 10Ut requiriig you

properl ever

toAconi\'{lgure anything. There isne limitsto the

archltecture
number of requests your-eede can handle.

AWS | LAMBDA EFEAT
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Serverless Development Lifecycle Gaps

e Access And Permission Management
o Collaboration Mechanisms
o Testing

e Monitoring And Instrumentation
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Access And Permission
Management

DANIEL
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Access And Permission Management

Scenario: A serverless function that

1. Istriggered by an uploaded image to S3 Bucket
“uploads”

2. Resizes the image
3. Saves the image to S3 Bucket “resized”

4. Updates a record in DynamoDB table “resize_records”
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Access And Permission Management

(& § | .
sam resize_records @
(o §
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Access And Permission Management

Shouldn’t this just work?
Nope.

(And that’s a good thing)



Google

serverless permissions

Google Search I'm Feeling Lucky
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Access And Permission Management

service: upload-to-s3-and-postprocess
frameworkVersion: ">=1.1.0"

custom:
bucket: <your-bucket-name>

provider:
name: aws
runtime: nodejs4.3

Access To Do Anything In

- Effect: Allow

— Every S3 Bucket In AWS

- §3:1x%x

Resource: "x" ACCOU nt!

functions:
postprocess:
handler: handler.postprocess
events:
- §3:
bucket: ${self:custom.bucket}
event: s3:0bjectCreated:x
rules:
- suffix: .png
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Access And Permission Management

Need To Scope Access To Specific Actions

Need To Scope Access To Specific
Resources
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Access And Permission Management

- Effect: Allow
- Action:
- s3:GetObject
- s3:PutObject
- Resource:
- arn:aws:s3:::uploads
— arn:aws:s3:::resized
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Access And Permission Management

| Have To Do This For Every Function And
Resource?

How?
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Access And Permission Management

Option A: Manual Generation And Provision
1. Developer Hand-Codes IAM Policies
2. Principal Architect Reviews Policies
3. DevOps Deploys Policies

4. You Can Finally Use Your Policy
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Access And Permission Management

Option B: Let Everyone Do Whatever They
Want
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Access And Permission Management

Option C: Use A Framework That
Automatically Generates Permissions
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Access And Permission Management

. e resized @

s [ resizer ‘

(& § | .
sam resize_records @
(o §

Automatically Generate
Permissions At Deployment
Time
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Access And Permission Management

Framework-based permission management
enables:

Faster development
Less errors

Compliance benefits for the organization
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How Not to Be a Dick

Collaboration
Mechanisms
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GitHub for teams

A better way to work together

GitHub brings teams together to work through problems, move ideas forward,
and learn from each other along the way.

Sign up your team

We're Done Here, Right?
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Collaboration Mechanisms

Serverless is cheap enough for every developer to
have their own application instances

Serverless local development and testing is hard

| want all my developers to be able to provision into
my team’s shared AWS account

But resources require unique hames



SS STACKERY

Collaboration Mechanisms

Solution: Namespace resource names
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Collaboration Mechanisms

Option A: Namespace Resources Manually

service: new-service
provider: aws
functions:
hello:
name: ${opt:stage}-hello
handler: handler.hello
world:
name: ${opt:stage}-world
handler: handler.world
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Collaboration Mechanisms

Option B: Framework Namespaces
Automatically

Function Name: hello
ol

Environment Name: dev

AWS Lambda Name: dev-hello
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Collaboration Mechanisms

My Own
Environment

o
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“The Testing is a chilling and devious dystopian thriller char all fans
of The Hunger Games will simply devour.”

J\' WNATHAN .\1 ABERRY, New Yor® T imes Iaont -.\-.||-|:,; n_nh.u ol
»

Rot {‘ .{...‘H'l and Flevhy \'fl /7:-,-:.,'

Testing

TESTING

JOELLE CHARBONNEAU
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Testing

Serverless Does Not Change Testing!

Serverless Changes How You Run Tests



SS STACKERY

Testing

Unit Tests: Same As Always
System Tests: 22??

Integration Tests: ?22?
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Testing

System And Integration Tests: Two
Schools Of Thought

A: Always Test In The Cloud

B: Fake Services For Local Testing
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Testing

Integration Tests In The Cloud

Pros: Faithful representation, possible
today

Cons: Slower, requires cloud access
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Testing

Integration Tests Locally With Service Fakes
Pros: Faster, does not require cloud access

Cons: Skew in behavior vs cloud, not very well
supported today

Upstream projects are trying to make this possible/
easier (e.g. AWS SAM Local)
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Testing

Integration Tests: Advice

(For Today Only!)

If application is only API endpoints +
Functions, do local tests

Otherwise, deploy into cloud and test
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Testing

So How Do | Make A Test Environment In
The Cloud?

We Solved This Already With
Namespaced Resources!
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Testing

With The Right Approach, Serverless Is
Just As Testable As Other Architectures
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Instrumentation uins =

Jeremy Bentham
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Monitoring And Instrumentation

How We Do It Today
1. Organization picks a set of monitoring tools
2. Ask everyone to always instrument the same way
3. Pray

4. Draconian measures
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Monitoring And Instrumentation

How We Should Do It
1. Pick a set of monitoring tools

2. Define instrumentation rules centrally

3. Framework auto-instruments every function

4. Cake
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Monitoring And Instrumentation

How Can A Framework Auto-instrument?
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Monitoring And Instrumentation

¢ index. js Raw

module.exports.handler = event => {
return event.x + event.y;

};
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Monitoring And Instrumentation

<] instrumented.js Raw

const handler = require('./index').handler;

module.exparts.handler = async event => {
try {
// Try to run original handler
return Promise.resolve(handler(event));
} catch (err) {
// If an error occurred, report it to Rollbar
const rollbar = require('rollbar');

rollbar.init(process.env.ROLLBAR_TOKEN) ;

// Report to Rollbar and wait for completion
await new Promise(resolve => rollbar.handleError(err, () => resalve()));

// Re-=throw original error
throw err;

};
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Monitoring And Instrumentation

Now Just Update The Handler:

index.handler => instrumented.handler
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Monitoring And Instrumentation

Great Monitoring Solutions For Serverless

(Diatribe In person because this changes
quickly over time and | don’t want to be
called out for 2 year old slides)
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Monitoring And Instrumentation

Metrics
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Monitoring And Instrumentation

Logging
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Monitoring And Instrumentation

Tracing
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Monitoring And Instrumentation

Error Aggregation
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Serverless Development Lifecycle Gaps

e Access And Permission Management
o Collaboration Mechanisms
o Testing

e Monitoring And Instrumentation
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How

U Manage The Gaps?
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Build All The Things Yourself

DOJATINTHE

TIES
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Build All The Things Yourself
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Use A Toolkit That Does It For You
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Thank you!

Chase Douglas, CTO @ Stackery.io
chase@stackery.io

@txase



