EdgeBench: Benchmarking Edge Computing Platforms

Anirban Das*, Stacy Patterson*, Mike P. Wittie^
*Department of Computer Science, RPI
Networked Systems Lab
^Gianforte School of Computing, Montana State University
Roadmap

• Motivation
• Related Work
• System Architectures
• Pipelines and Applications/ Workloads
• Experimental Results
• Conclusion
What is edge computing?

- Manage and Deploys Edge Modules
- Provide connectors to other services
- Partial or Full computation

Sensors / Data sources
Sensor data Data flow
Motivations

- Ubiquitous intelligence
- Speech detection
- Image recognition
- Sensor data stream
- Autonomous cars
- Augmented Reality

How serverless fits in the picture?

- Manage and Deploys Edge Modules
- Provide connectors to other services
- Partial or Full computation
- Sensors / Data sources
- Sensor data Data flow

AWS Greengrass
Azure IoT Edge
Big 4: AWS Lambda, Azure Functions, GCF, IBM Openwhisk

- CPU intensive benchmarks using Serverless and Hyperflow
 - Malawski et. al., 2017
- Azure based prototype for performance oriented serverless and measures performance using custom made tool
 - McGrath and Brenner, 2017
- Propose a micro benchmark for cost and performance modeling
 - Back and Andrikopoulos, 2018
- Provides a real world example of running k-Means clustering on AWS Lambda
 - Deese, 2018
Research Questions and Contributions

• Need to compare vendors in Edge Computing
• Need to compare edge architectures with cloud only architectures
• Feasibility of edge architectures

• Contributions:
 ▪ Developed benchmark EdgeBench
 ▪ Developed benchmarking methodologies and metrics of interest
 ▪ Developed applications based on real world use cases
 ▪ Studied two platforms / industry vendors:
 - AWS Greengrass
 - Microsoft Azure IoT Edge
System architectures of AWS Greengrass and Azure IoT Edge

AWS Greengrass
- Data Source / Sensor
- Greengrass Device
- Local Lambda Function
- AWS Cloud Services
- AWS IoT
- Rule / Routing
- Results
- S3
- DynamoDB
- Lambda

Azure IoT Edge
- Data Source / Sensor
- Azure IoT Edge Device
- Edge Runtime
- docker
- User code in Docker
- Microsoft Azure Cloud Services
- Azure IoT Hub Endpoint
- Route to Blob
- Results
- Azure Blob Storage
- Azure Stream Analytics
- Event Hubs
Benchmark Applications

• Canonical applications from real-world use cases

 ▪ Scalar Sensor Emulator:
 − Extremely light-weight workload - A scalar sensor value generator

 ▪ Image Classification:
 − A representative workload from the image processing/ classification domains like autonomous cars, AR

 ▪ Speech to Text Decoding/Translation:
 − An edge use-case of speech to text decoding inspired from the popularity of Amazon Echo and Google Home
Edge Pipelines for Benchmark Applications

AWS Greengrass

Greengrass Device

AWS Cloud Services

Local Lambda Function

AWS IoT

Rule / Routing

S3 Bucket

Results

Image / Audio Folder

Azure IoT Edge Device

Microsoft Azure Cloud Services

Edge Runtime

User code in Docker

Azure IoT Hub Endpoint

Route to Blob

Azure Blob Storage

Results

Image / Audio Folder

Image / Audio Folder
Image Classification/ Object Recognition

- Python
- MXNet framework (Squeezenet)
- Workload: Imagenet 2012 dataset

Speech to Text

- Python
- PocketSphinx: Python Port: https://github.com/bambocher/pocketsphinx-python
- Workload: Samples from Tatoeba Database from Mozilla Common Voice platform
Metrics for Edge

- 3 UTC timestamps:
 - T_1 at the edge
 - T_2 at IoT Hub
 - T_3 at S3/Blob

- Feasibility of edge device
 - Compute time
 - Memory and CPU utilization

- Feasibility of applications
 - Time in Flight / Flight time
 - End to End Latency

- Bandwidth Savings
 - Payload Size
Cloud Pipelines for Benchmark Applications

- Files send sequentially (10-15 s delay)
- Lambda memory at 3008 MB and Azure Consumption Host Plan
- Metric: End to End Latency
Experimental Setup

- Raspberry Pi 3B
- TM 2000A Stratum 1 for time sync
- Azure and AWS locations US East North Virginia
- Local Lambda Long running
- GGC Core 1.5.0, Azure IoT Hub device client 1.4.0.
Results - Compute Time and Flight Time

- Image Recognition Sub second, Audio slow
Results - End to End Time

Both Edge and Cloud

- Greengrass
- Azure Edge
- AWS Cloud
- Azure Cloud

End To End Time (ms)

- 10^3
- 10^4
- 10^5

Audio: 1.1s
Image: 87s
Scalar: ≈ 95s

Slowest, due to batching
Fastest

Networked Systems Lab, RPI

EdgeBench: Benchmarking Edge Computing Platforms

12/20/2018
Results - Bandwidth Usage

- Massive reduction in BW usage in cloud vs edge pipelines:
 - AWS: 36x in audio and 81x in image
 - Azure: 36x in audio and 77x in image

- Average single payload size for edge apps:
 - Image: 752 bytes
 - Audio: 162 bytes
 - Scalar: 234 bytes

<table>
<thead>
<tr>
<th></th>
<th>Total Input Size (Mbytes)</th>
<th>Total raw Payload Size (Mbytes)</th>
<th>Total MBytes Transmitted in Network</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trials = 104</td>
<td>8.83</td>
<td>0.02</td>
<td>0.25 0.26</td>
</tr>
<tr>
<td></td>
<td>Cloud</td>
<td>8.83</td>
<td>9.06 9.09</td>
</tr>
<tr>
<td>Image</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trials = 500</td>
<td>71.69</td>
<td>0.38</td>
<td>0.9 0.96</td>
</tr>
<tr>
<td></td>
<td>Cloud</td>
<td>71.69</td>
<td>73.49 73.49</td>
</tr>
<tr>
<td>Scalar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trials = 200</td>
<td>0.05</td>
<td>0.05</td>
<td>0.33 0.26</td>
</tr>
<tr>
<td></td>
<td>Cloud</td>
<td></td>
<td>0.47 0.38</td>
</tr>
</tbody>
</table>
Rough Infrastructure Cost Estimate (August 2018)

- Image Pipeline: 1 traffic camera, image every 10 second for 1 month
- Input data size: 259,200 x 143 KB
- Cloud Config: 3008 MB Lambda

- Cost:
 - Greengrass: $\approx 1.56 \ USD \ / \ month$
 - AWS Cloud Solution: $\approx 8.027 \ USD \ / \ month$

- Cloud solution 5.3x more expensive at least.

- Data Transfer:
 - Greengrass: 253 MB
 - AWS Cloud Solution: 35.4 GB
Conclusion

• Presented EdgeBench (https://github.com/akaanirban/edgebench)
 ▪ Methodologies, Applications, Performance on Greengrass and Azure IoT Edge
• Our results show:
 ▪ Performance on the edge comparable for both platforms
 ▪ Cloud is faster than edge
 ▪ Bandwidth saving is massive using edge architectures
• Is one platform better than the other?
 ▪ Depends on use case for e.g., batching vs event based
• Future work:
 ▪ Expanding into Google and IBM’s products
 ▪ Expand study with different model sizes and applications
 ▪ Standardize deployment procedure (open problem)
 - Need for frameworks like Serverless for homogeneity
 - Greengo for Greengrass (https://github.com/dzimine/greengo)
Thank You
Results - Resource usage on Pi

Edge Only Pipelines

≈ 200 MB

Memory Usage %

AWS
Azure

Audio Image Scalar

CPU Usage %

AWS
Azure

Audio Image Scalar

88-90%
negligible
Feature Comparison

<table>
<thead>
<tr>
<th></th>
<th>AWS Greengrass</th>
<th>Azure IoT Edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Runtime</td>
<td>Python 2.7, Node.JS 6.10, Java 8, C, C++</td>
<td>C#, C, Node.JS ver > 0.4.x.x, Python (both 2.7 and 3.6), and Java 7+</td>
</tr>
</tbody>
</table>
| **Deployment Method** | Lambda Functions
 - Greengrass Containerized Non Containerized (as of ggc core 1.7)
 - Install heavier libraries directly on Raspberry Pi | Docker Containers
 - Orchestrated using Moby
 - Can package anything in Containers |
| **Triggers Routes available** | 15 (e.g. S3, Dynamo DB, Lambda, Cloudwatch logs, SNS, Step Functions etc.) | 4 (e.g. Blog Storage, Event Hub, Service Bus Queue, Service bus topic) (Can directly deploy Azure ML models and ASA jobs into IoT Edge) |
| **Parallel Execution** | Parallel Lambdas can be triggered to run locally | N/A |
| **Deployment** | boto3, aws-cli | azure-cli, VSCode |
Azure IoT SDKs for Devices v1.4.4

pierreca released this on Oct 31 · 4 commits to master since this release

Assets

- Source code (zip)
- Source code (tar.gz)

We are snapping to the latest LTS (Long-Term Support) version of the C SDK and therefore declaring our 1.4.x series of update the LTS branch.

We will be publishing new features under the 1.5.x denomination in the future.

This is also a good time to let everybody know that we’ve seen and heard the feedback loud and clear about the many pains caused by having to wrap the C SDK using Boost (and the ensuing platform incompatibilities). At that point we’ve started a complete re-write of the SDK in pure, cross platform python.

As soon as we have a partial-feature SDK preview ready we will communicate this in the readme and start redirecting new users to the preview of the v2 SDK.
<table>
<thead>
<tr>
<th>Change</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amazon SageMaker Neo Deep Learning Runtime</td>
<td>The Amazon SageMaker Neo deep learning runtime supports machine learning models that have been optimized by the Amazon SageMaker Neo deep learning compiler.</td>
<td>November 28, 2018</td>
</tr>
<tr>
<td>Run AWS IoT Greengrass in a Docker container</td>
<td>You can run AWS IoT Greengrass in a Docker container by configuring your Greengrass group to run with no containerization.</td>
<td>November 26, 2018</td>
</tr>
<tr>
<td>AWS IoT Greengrass Version 1.7.0 Released</td>
<td>New features: Greengrass connectors, local secrets manager, isolation and permission settings for Lambda functions, hardware root of trust security, connection using ALPN or network proxy, and Raspbian Stretch support.</td>
<td>November 26, 2018</td>
</tr>
<tr>
<td>AWS IoT Greengrass Software Downloads</td>
<td>The AWS IoT Greengrass Core Software, AWS IoT Greengrass Core SDK, and AWS IoT Greengrass Machine Learning SDK packages are available for download through Amazon CloudFront.</td>
<td>November 26, 2018</td>
</tr>
<tr>
<td>AWS IoT Device Tester for AWS IoT Greengrass</td>
<td>Use AWS IoT Device Tester for AWS IoT Greengrass to verify that your CPU architecture, kernel configuration, and drivers work with AWS IoT Greengrass.</td>
<td>November 26, 2018</td>
</tr>
<tr>
<td>AWS CloudTrail Logging for AWS IoT Greengrass API Calls</td>
<td>AWS IoT Greengrass is integrated with AWS CloudTrail, a service that provides a record of actions taken by a user, role, or an AWS service in AWS IoT Greengrass.</td>
<td>October 29, 2018</td>
</tr>
<tr>
<td>Support for TensorFlow v1.10.1 on NVIDIA Jetson TX2</td>
<td>The TensorFlow precompiled library for NVIDIA Jetson TX2 that AWS IoT Greengrass provides now uses TensorFlow v1.10.1. This supports Jetpack 3.3 and CUDA Toolkit 9.0.</td>
<td>October 18, 2018</td>
</tr>
<tr>
<td>Support for MXNet v1.2.1 Machine Learning Resources</td>
<td>AWS IoT Greengrass supports machine learning models that are trained using MXNet v1.2.1.</td>
<td>August 29, 2018</td>
</tr>
<tr>
<td>AWS IoT Greengrass Version 1.6.0 Released</td>
<td>New features: Lambda executables, configurable message queue, configurable reconnect retry interval, volume resources under /proc, and configurable write directory.</td>
<td>July 26, 2018</td>
</tr>
</tbody>
</table>