
Review of

Serverless Frameworks
Kyriakos Kritikos | ICS-FORTH

Pawel Skrzypek | 7bulls.com

Outline

• Introduction and motivation
• Review Analysis

• Goal
• Scope
• Search Process
• Criteria
• Results

• Challenges

A single, universal

platform for optimized

deployment and

management of

applications in the

cross-cloud environment.

Introduction

Serverless extension to
Melodic platform enabling the
management of serverless
components.

Motivation

• To unlock the serverless vendor lock-in

• To optimize serverless component deployment

• To make serverless usage more efficient and

devops-friendly

Complete multicloud deployment platform - MELODIC

Architecture idea
Functionizer - initial architecture flow

Application
deployment on

Melodic (CAMEL)

Camel model
enchancement -

serverless

1
Setting

parameters of
application
(CAMEL)

Extension
to support
serverless

components

2
Calculation

of initial deployment
(CP Generator

Solvers)

Extension
to profiling and
optimalization

3
Deployment

orchestration to
selected Cloud

Providers (Adapter)

Extension
to orchestrated

deployment
of serverless

components and
adaptation

4

Metrics collection
& Aggregation

Extension
to monitoring of

serverless
components

Should
deployment

be optimized?

Deployment execution and metric collection (Cloudiator)

Serverless deployment execution and monitoring

5

AWS Azure GPC Other Cloud Providers (Open Stack)

Current functionality on Melodic

Extension delivered within the Functionizer

Legend:

6

Introduction
• Serverless computing attains momentum

– Multiple advantages:
• Zero administration

• Infinite elasticity

• Minimal cost

• Capability to handle unanticipated workloads

– Multiple applications:
• Image processing

• Video processing

• Scientific computing

• Edge computing

Introduction
• Traditional big cloud providers came into play

– Offer serverless platforms

• Mostly in beta version with known limitations

– Plus added-value services to lock-in customers

• e.g., trigger-oriented or state-handling

• Lock-in issue can be addressed via
the use of serverless platforms which
– Abstract away from technical specificities

– Make the life of the devops easier via the supply of serverless

component development & deployment CLIs

Introduction

• Serverless frameworks differ wrt:
– The level they abstract from

– The level of support to the serverless application lifecycle

• Main question for devops:
– Which serverless framework to choose based on the devops

needs?

Review Goal
• We provide an answer to this question via a review on

serverless frameworks based on carefully designed set

of criteria spanning the serverless application lifecycle

• We view a serverless framework as: a software

middleware that abstracts away from serverless platform

specificities and eases the deployment and provisioning

of multi-cloud serverless applications

Review Scope
• Two kinds of serverless frameworks reviewed:

– Abstraction frameworks (e.g., serverless.com)

– Provisioning frameworks (e.g., Fission)

• Enable to operate mini-serverless platforms over

existing clouds

• We have not reviewed frameworks which abstract from

just one serverless platform

• We have not also reviewed proprietary frameworks

• Both latter are filtering criteria in search process

Review Search Process
• Multi-source search process utilising

– Search engines (e.g., Google)

– Scholarly repositories (e.g., Web of Science)

• Findings:

– CNCF pointer to multiple frameworks:

https://landscape.cncf.io/grouping=landscape&landscape=

serverless

– Numerous articles pointing or proposing such frameworks

https://landscape.cncf.io/grouping=landscape&landscape=serverless
https://landscape.cncf.io/grouping=landscape&landscape=serverless

• Based on the (serverless) application lifecycle

Requirement
Analysis Design Development Deployment

TestingExecutionMonitoring
& Adaptation

Normal flow Runtime adaptation flow Adaptation flow

Nomenclature:

Review Criteria

Review Criteria
• Design

– Composition: composition flow description

– FaaSification: process to produce functions

out of existing code

• Development:

– Language: support for multiple languages

– Function Development Kits (FDKs)

– Integration: wrt other frameworks and platforms

Review Criteria
• Deployment

– CI/CD

– Versioning

• Testing: support to different types of testing

• Execution

– Event coverage

– Execution support: via a CLI or UI or both

Review Criteria
• Monitoring & Adaptation

– Logging: level of logging supported

– Metric support: richness of metric set used to monitor

serverless components

– Monitoring UI

• Security: support for both authentication & authorisation

to regulate the controlled access to functions

Review Results
Serverless Frameworks

Phase Criterion Fission Kubeless Iron
Functions

Sparta Fn Snafu Serverless

Design
Compos. Workflows AWS

Step
Flow AWS Step

FaaSific. Yes

Dev.

Language NodeJS,
Python,
Ruby, Go,
PHP, Bash,
any linux
exec.

NodeJS,
Python,
Ruby, Go,
PHP,
Ballerina

Go, .NET,
Javascript,
Java,
Lambda,
Python,
Ruby, Rust

Go Any Python,
Java

Javascript, C#,
F#, Scala,
Python, Java,
Goland,
Groovy, Kotlin,
PHP, Swift

FDKs Yes

Integr. Picasso AWS
Lambda

AWS
Lambda

AWS
Lambda,
OpenWhis
k, Fission,
Kubeless

AWS Lambda,
Azure
Functions
Fission,
Kubeless
Google
Functions,
OpenWhisk
SpotInst,
kubeless, Fn

Review Results
Serverless Frameworks

Phase Criterion Fission Kubeless Iron
Functions

Sparta Fn Snafu Serverless

Deploy.
CI/CD Yes Yes

Version. Yes Yes

Testing Unit Unit

Execution
Event Cov. HTTP,

Cron, MQ
HTTP,
Cron, MQ,
Stream

HTTP, MQ,
Alarm

HTTP,
MQ,
Stream

HTTP,
MQ

HTTP, MQ,
FS, Cron

HTTP, Cron,
MQ, Stream

Support CLI Both Both CLI Both CLI CLI

Monit.

Logging Simple Adv. Simple Simple Adv. Simple Adv.

Metrics Resource (Succ.)
Call Num,
Exec. Time

Not Def. Custom Count,
Duration,
Resource

Exec. Time CloudWatch

UI Yes Yes Yes Yes

Security U/RBAC,
Adv. Auth.

2-level Auth. RBAC UBAC,
Basic Auth.

U/RBAC,
Adv. Auth.

Challenges
• Overall Vision: abstraction framework supporting the

adaptive provisioning of mixed applications

• Two main directions to support this:

– Integration of serverless frameworks with multi-cloud

application management frameworks

– Improvement of serverless frameworks wrt the

application lifecycle

Challenges
• Design

– C1: Novel design methods & techniques for mixed
applications

– C2: FaaSification of applications
• FaaS-readiness tools
• Improve FaaSification tools by also covering other

languages
– C3: Serverless component composition:

• Reuse vast knowledge & experience in workflow
modelling & scientific computing

• Better integration with different types of events

Challenges
• Development

– C4: integration of serverless frameworks as plugins in

development frameworks

– C5: FDK improvement

• Better & more uniform coverage of progr. languages

• FDK extensions over: (a) enhanced error handling; (b)

proper data binding & capabilities to extend it; (c)

arbitrary calls to any kind of function/component

Challenges
– C6: Deployment reasoning for mixed applications

• C6.1: matching component requirements with cloud/platform
capabilities

• C6.2: appropriate formulation and solving of
resp. optimisation problem

– C7: Modelling to support matching & reasoning:
• C7.1: mixed application modelling covering

all possible aspects
• C7.2: cloud/platform offering modelling

– C8: Automatic (custom) serverless platform reconfiguration based
on app. requirements and configuration patterns / details

Challenges
• Testing

– C9: Unit testing spanning additional languages

– C10: Development and/or extending existing integration

methods for mixed application integration testing

• Execution

– C11: Realisation of Event Gateways based on right

abstraction methods & concepts from event programming

Challenges
• Monitoring & Adaptation

• C12: Advanced monitoring & evaluation capabilities

– Support for custom metrics

– Metric aggregation

– Mechanisms for event pattern detection

• C13: Cross-level adaptation of mixed applications along

with

– The ability to sense the “problematic” situations

– The ability to semi-automatically generate the right

adaptation rules

Functionizer & Melodic

Melodic website:

www. melodic.cloud
Download and develop:

https://melodic.cloud/download.html

Kyriakos Kritikos

Pawel Skrzypek

