
Comparison of FaaS
Orchestration Systems

Pedro García López, Marc Sánchez-Artigas, Gerard París, Daniel Barcelona Pons,
Álvaro Ruiz Ollobarren, and David Arroyo Pinto

Cloud and Distributed Systems Lab

CloudButton: Serverless Data Analytics

 4.4M€ Research project

 cloudbutton.eu

 Coordinated by URV

 2019-2021

Creating Serverless Workflows

Azure Durable FunctionsAzure Durable Functions

IBM Function ComposerIBM Function Composer

The Serverless Trilemma

(1) Functions as Black Boxes(1) Functions as Black Boxes

(2) Substitution principle(2) Substitution principle

(3) Double billing(3) Double billing

 If the serverless runtime is limited to a
reactive core, i.e. one that deals only
with dispatching functions in response to
events, then these constraints form the
serverless trilemma.

 IBM Sequences are ST-Safe

Evaluation framework

 ST-Safeness

 Programming model

 Parallel execution support

 State management

 Software packaging and repositories

 Architecture

 Billing model

 Overhead

Amazon Step Functions

 ST-Safeness

 Programming model

 Parallel execution support

 State management

 Software packaging and repositories

 Architecture

 Billing model

Amazon States Language DSLAmazon States Language DSL

32K32K

cclient schedulerlient scheduler

0.025USD per state transition0.025USD per state transition

(2) composability(2) composability

Amazon Step Functions

IBM Composer and Sequences

 ST-Safeness

 Programming model

 Parallel execution support

 State management

 Software packaging and repositories

 Architecture

 Billing model

JavaScript Composer libraryJavaScript Composer library

5MB5MB

reactive core, conductor actionsreactive core, conductor actions

unknown, free?unknown, free?

IBM Composer and Sequences

composer.sequence(// programmatic composition
 ‘currentTemperature’, // call cloud function or API
 composer.if(// conditional control flow
 result => result.temp < 60, // mix inline JavaScript
 ‘turnOnHeat’) // interface to 3rd party services
)

Azure Durable Functions

 ST-Safeness

 Programming model

 Parallel execution support

 State management

 Software packaging and repositories

 Architecture

 Billing model

C# async/await, Task FrameworkC# async/await, Task Framework

Unlimited, compressedUnlimited, compressed

reactive core, event sourcingreactive core, event sourcing

unknown, unexpected storage costsunknown, unexpected storage costs

Azure Durable Functions

Experiment 1: Sequences

Experiment 2: Parallels

Experiments

Experiments

Suspend API

Running

Suspended

Running

Finished

 Suspend function until event is received

 Passivation and state should be handled
by the Function

 Requires a pure reactive core enabling
custom events

 It would enable the creation of custom
orchestrators

Discussion

Conclusions

 Amazon Step Functions is the most mature project

 Microsoft ADF is the more advanced in programmability, IBM
Composer wins in simplicity

 None of them support parallel tasks efficiently

 Orchestration must have a cost if it is fault-tolerant

 Reactive core, custom events and suspend API

 Early immature projects with high potential for the future

	Slide1
	Slide4
	Slide3
	Slide5
	Slide10
	Slide6
	Slide15
	Slide11
	Slide18
	Slide12
	Slide19
	Slide7
	Slide13
	Slide14
	Slide 15
	Slide17
	Slide16
	Slide20

