
Comparison of FaaS
Orchestration Systems

Pedro García López, Marc Sánchez-Artigas, Gerard París, Daniel Barcelona Pons,
Álvaro Ruiz Ollobarren, and David Arroyo Pinto

Cloud and Distributed Systems Lab

CloudButton: Serverless Data Analytics

 4.4M€ Research project

 cloudbutton.eu

 Coordinated by URV

 2019-2021

Creating Serverless Workflows

Azure Durable FunctionsAzure Durable Functions

IBM Function ComposerIBM Function Composer

The Serverless Trilemma

(1) Functions as Black Boxes(1) Functions as Black Boxes

(2) Substitution principle(2) Substitution principle

(3) Double billing(3) Double billing

 If the serverless runtime is limited to a
reactive core, i.e. one that deals only
with dispatching functions in response to
events, then these constraints form the
serverless trilemma.

 IBM Sequences are ST-Safe

Evaluation framework

 ST-Safeness

 Programming model

 Parallel execution support

 State management

 Software packaging and repositories

 Architecture

 Billing model

 Overhead

Amazon Step Functions

 ST-Safeness

 Programming model

 Parallel execution support

 State management

 Software packaging and repositories

 Architecture

 Billing model

Amazon States Language DSLAmazon States Language DSL

32K32K

cclient schedulerlient scheduler

0.025USD per state transition0.025USD per state transition

(2) composability(2) composability

Amazon Step Functions

IBM Composer and Sequences

 ST-Safeness

 Programming model

 Parallel execution support

 State management

 Software packaging and repositories

 Architecture

 Billing model

JavaScript Composer libraryJavaScript Composer library

5MB5MB

reactive core, conductor actionsreactive core, conductor actions

unknown, free?unknown, free?

IBM Composer and Sequences

composer.sequence(// programmatic composition
 ‘currentTemperature’, // call cloud function or API
 composer.if(// conditional control flow
 result => result.temp < 60, // mix inline JavaScript
 ‘turnOnHeat’) // interface to 3rd party services
)

Azure Durable Functions

 ST-Safeness

 Programming model

 Parallel execution support

 State management

 Software packaging and repositories

 Architecture

 Billing model

C# async/await, Task FrameworkC# async/await, Task Framework

Unlimited, compressedUnlimited, compressed

reactive core, event sourcingreactive core, event sourcing

unknown, unexpected storage costsunknown, unexpected storage costs

Azure Durable Functions

Experiment 1: Sequences

Experiment 2: Parallels

Experiments

Experiments

Suspend API

Running

Suspended

Running

Finished

 Suspend function until event is received

 Passivation and state should be handled
by the Function

 Requires a pure reactive core enabling
custom events

 It would enable the creation of custom
orchestrators

Discussion

Conclusions

 Amazon Step Functions is the most mature project

 Microsoft ADF is the more advanced in programmability, IBM
Composer wins in simplicity

 None of them support parallel tasks efficiently

 Orchestration must have a cost if it is fault-tolerant

 Reactive core, custom events and suspend API

 Early immature projects with high potential for the future

	Slide1
	Slide4
	Slide3
	Slide5
	Slide10
	Slide6
	Slide15
	Slide11
	Slide18
	Slide12
	Slide19
	Slide7
	Slide13
	Slide14
	Slide 15
	Slide17
	Slide16
	Slide20

