An Investigation of the Impact of Language
Runtime on the Performance and Cost of
Serverless Functions



Objective:

To understand the impact of
the choice of language runtime
on the performance and cost of
serverless function execution.



Scope of Investigation
Use empty test functions to measure platform startup performance.

AWS Lambda
e .NET Core 2 (C#)
e Java$8
e Python 36 AWS US-East-1/ Azure
128MB Memory Allocation e Node]S 6.10 East US
Single Function Execution e Go Empty Functions
Azure Functions Cold-Start vs Warm-Start
e NET C# November 2018
e Node]S 6.11.2



Serverless Billing Model

e Individual execution cost per function invocation
e Execution duration billed at “GB-second” rate
e (ost rounded at 100ms increments (50ms @ edge)

Example: AWS Lambda, 128MB, 85ms Duration, 100ms “Billed” Duration

30.21+50.20 = S0.41

Execution Time (0.1s*0.125GB * Invocation Cost Total Cost
$0.00001667 per function)

* 1 million function invocations
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Results Summary
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Results Analysis - AWS Lambda
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Average Execution Time
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Results Analysis - Azure Functions
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Results Analysis - AWS vs Azure
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Cost Analysis



TPS Cost Calculations

AWS Lambda
Language | Cost Per | Cost Per | Cost Per Cost Per
Runtime Day @ Day @ Year @ Year @
100-TPS | 30k-TPS | 100-TPS 30k-TPS
C# NET $50.34 $15,101 $18,373 | (55,511,980
Golang $3.53 $1,059 $1,288 S3RE35
Java 8 §10.73 | $3.219 | $3916 [CS1,174,913
NodelJS $3.53 $1,059 $1,288 $386,355
Python $3.53 $1,059 $1,288 $386,355

* Figures based on cold-start times to illustrate potential cost impact




TPS Cost Calculations

Azure Functions

Language

Cost Per Cost Per | Cost Per Cost Per
Runtime Day @ Day @ Year @ Year @

100-TPS 30k-TPS 100-TPS 30k-TPS
NET C# $3.46 | $1,036.80 $1,261 ,
NodelS $10.37 | $3,110.40 $3,784 (| $1,135,296

* Figures based on cold-start times to illustrate potential cost impact



CostHat Model

(Leitner et al. 2016)
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Conclusions &
Future Work



Conclusion

Overall Performance

For optimum performance and
cost-management of serverless
applications, C# .NET is the top
performer for Azure Functions.

Python is clear overall choice on
AWS Lambda.



Conclusion

Cold-Start Performance

The performance of NodeJS in Azure
Functions in cold-start scenarios
demands caution on its usage.

Similarly caution is advised with Java
and especially C# .NET on AWS

Lambda.



Conclusion
Pace of Change

The pace of change in serverless
computing is extremely high - in
features offered, performance
characteristics and cost models.

This constantly shifting environment
requires regular review to ensure

serverless applications are designed

for optimum performance and cost
benefit.




Conclusion
Function Composition

The composition of functions in
serverless applications is a crucial
design decision, which if done in an
appropriately fine-grained manner,

can lead to a more flexible but also
more cost-effective solution in the

long term.




Future Work

e Additional Serverless Platform Testing
o Google Cloud Functions
o |BM OpenWhisk
o OpenLambda

e Real-Time Dashboard
e Additional Test Variables

o Regions / Hardware
o Memory Allocations

e Additional Test Scenarios
o DynamoDB Access
o APl Access
o lLanguage Performance Benchmarking Tests



Questions?
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