
An Investigation of the Impact of Language
Runtime on the Performance and Cost of

Serverless Functions
David Jackson & Gary Clynch

Institute of Technology, Tallaght

4th International Workshop on Serverless Computing (WoSC4)

20th December 2018

Objective:
To understand the impact of
the choice of language runtime
on the performance and cost of
serverless function execution.

Scope of Investigation

AWS Lambda

● .NET Core 2 (C#)

● Java 8

● Python 3.6

● NodeJS 6.10

● Go

Azure Functions

● .NET C#

● NodeJS 6.11.2

AWS US-East-1 / Azure

East US

Empty Functions

Cold-Start vs Warm-Start

November 2018

128MB Memory Allocation

Single Function Execution

Use empty test functions to measure platform startup performance.

Serverless Billing Model
● Individual execution cost per function invocation
● Execution duration billed at “GB-second” rate
● Cost rounded at 100ms increments (50ms @ edge)

Example: AWS Lambda, 128MB, 85ms Duration, 100ms “Billed” Duration

$0.21 + $0.20 = $0.41
* 1 million function invocations

Execution Time (0.1 s * 0.125 GB *
$0.00001667 per function)

Invocation Cost Total Cost

Serverless
Architecture
Serverless

Performance

Framework

https://github.com/Learnspree/Serverless-Language-Performance-Framework

Results Summary

2.69ms
.NET Core 2 (Average Performance)

2.70ms
Python

10.84ms
GoLang

3.77ms
Java

4.20ms
NodeJS

AWS Lambda - Warm Start

2,643ms
.NET Core 2 (Average Performance)

4.84ms
Python

6.63ms
GoLang

412.89ms
Java

31.9ms
NodeJS

AWS Lambda - Cold Start

0.78ms
.NET C# Script (Average Performance)

1.61ms
NodeJS

Azure Functions - Warm Start

17.08ms
.NET C# Script (Average Performance)

424.97ms
NodeJS

Azure Functions - Cold Start

Results Analysis - AWS Lambda

AWS Lambda
Warm Start

9,550 Function

Invocations Per

Runtime

Nov 2018

AWS Lambda
Warm Start

9,550 Function

Invocations Per

Runtime

Nov 2018

AWS
Lambda
Cold-Start

500 Function

Invocations

Per Runtime

Nov 2018

AWS Lambda
Cold-Start Histogram

500 Function Invocations Per Runtime

Nov 2018

AWS Lambda
Cold Start

Top 3

Performers

500 Function

Invocations Per

Runtime

Nov 2018

Results Analysis - Azure Functions

Azure
Functions
Warm Start

9,550 Function

Invocations

Per Runtime

Nov 2018

Azure
Functions
Cold Start

500 Function

Invocations

Per Runtime

Nov 2018

Azure
Performance

Cold-Start

Histogram

500 Function

Invocations

Per Runtime

Nov 2018

Results Analysis - AWS vs Azure

AWS vs
Azure

NodeJS

Cold Start

500 Function

Invocations

Per Runtime

Nov 2018

AWS vs Azure C# .NET Warm Start

Cost Analysis

TPS Cost Calculations
AWS Lambda

* Figures based on cold-start times to illustrate potential cost impact

TPS Cost Calculations
Azure Functions

* Figures based on cold-start times to illustrate potential cost impact

CostHat Model

Serverless

Performance

Framework

Architecture

30k Function

Invocations based on

1,000 TPS

(Leitner et al. 2016)

Conclusions &
Future Work

Conclusion
Overall Performance

For optimum performance and

cost-management of serverless

applications, C# .NET is the top

performer for Azure Functions.

Python is clear overall choice on

AWS Lambda.

Conclusion
Cold-Start Performance

The performance of NodeJS in Azure

Functions in cold-start scenarios

demands caution on its usage.

Similarly caution is advised with Java

and especially C# .NET on AWS

Lambda.

Conclusion
Pace of Change

The pace of change in serverless

computing is extremely high - in

features offered, performance

characteristics and cost models.

This constantly shifting environment

requires regular review to ensure

serverless applications are designed

for optimum performance and cost

benefit.

Conclusion
Function Composition

The composition of functions in

serverless applications is a crucial

design decision, which if done in an

appropriately fine-grained manner,

can lead to a more flexible but also

more cost-effective solution in the

long term.

Future Work
● Additional Serverless Platform Testing

○ Google Cloud Functions
○ IBM OpenWhisk
○ OpenLambda

● Real-Time Dashboard
● Additional Test Variables

○ Regions / Hardware
○ Memory Allocations

● Additional Test Scenarios
○ DynamoDB Access
○ API Access
○ Language Performance Benchmarking Tests

Questions?

References
● Leitner, P., Cito, J. & Stöckli, E. (2016), Modelling and managing

deployment costs of microservice-based cloud applications, in
‘Proceedings of the 9th International Conference on Utility and Cloud
Computing’, ACM, pp. 165–174.

