An Investigation of the Impact of Language
Runtime on the Performance and Cost of
Serverless Functions

Objective:

To understand the impact of
the choice of language runtime
on the performance and cost of
serverless function execution.

Scope of Investigation
Use empty test functions to measure platform startup performance.

AWS Lambda
e .NET Core 2 (C#)
e Java$8
e Python 36 AWS US-East-1/ Azure
128MB Memory Allocation e Node]S 6.10 East US
Single Function Execution e Go Empty Functions
Azure Functions Cold-Start vs Warm-Start
e NET C# November 2018
e Node]S 6.11.2

Serverless Billing Model

e Individual execution cost per function invocation
e Execution duration billed at “GB-second” rate
e (ost rounded at 100ms increments (50ms @ edge)

Example: AWS Lambda, 128MB, 85ms Duration, 100ms “Billed” Duration

30.21+50.20 = S0.41

Execution Time (0.1s*0.125GB * Invocation Cost Total Cost
$0.00001667 per function)

* 1 million function invocations

Serverless |
D=l

| [
)
Architecture o => @ =:><7>
Sk ==
Storage-Triggered
Serverless Furcons Metrics Blob ~ Logger Function calls
Under Test Storage API
Performance Azure .
Framework
Common
Trigger via Components
) CloudWatch
€ Logs
z Invoke store
5 . API 1 y metrlcs
=
% | R | =
2
o
é Clg:grll:;ch API Gateway &ﬁtﬁ: Metrics
B Lambda Toger v
2 DynamoDB
8 stream
; . store
costs
B Pricing @@l \'
Target . .
Functions Environment <
Aws Un(dAzrv ;’)est Variables L:r:;;a Costs

https://github.com/Learnspree/Serverless-Language-Performance-Framework

Results Summary

2.10ms

Python

AWS Lambda - Warm Start

2.69ms

NET Core 2 (Average Performance)

10.84ms 3.77ms 4.20"18

GoLang Java Node]S

AWS Lambda - Cold Start

2,643

NET Core 2 (Average Performance)

4.84ms 6.63ms 412.89ms 31.9ms

Python GoLang Java Node]JS

Azure Functions - Warm Start

0.78ms

NET C# Script (Average Performance)

1.61ms

Node]S

Azure Functions - Cold Start

11.08ms

NET C# Script (Average Performance)

424.91ms

Node]S

Results Analysis - AWS Lambda

AWS Lambda

Warm Start

9,550 Function
Invocations Per
Runtime

10.84

Average Execution Time

377

27

java8

Language Runtime

$0.00

AWS I_ambda B co M rpython [Javas [.NETCore2
Warm Start

Average Execution Time

Average == Cost Per Million ($)

3000ms
2643.38
$5/83
2000ms
1000ms
$1.24
412.89
$0.41 $0.41 $0.41
6.63 LD 4.84
Oms e
dotnet2 go java8 node610 python3

Language Runtime

w
©

$4

Cost Per Million Function Invocations

AWS
Lambda

Cold-Start

AWS Lambda

Cold-Start Histogram

B dotnet2 (count) [go (count) WM java (count) [node(count) [python (count)

Total Occurrences

sz mrEr e

urmrszmicmsTzoourarmucazos

=rmrmaes

a0
a0

2000.
2100.20
4000.

Execution Time (ms)

AWS Lambda

Cold Start

[0 Node)s [Go M Python

Top 3
Performers

Results Analysis - Azure Functions

Azure

Functions
Warm Start

Average Execution Time (ms)

C# (Warm) NodeJS (Warm)

Language Runtime

Azure

Functions
Cold Start

Average Execution Time (ms)

B Duration @ Cost Per Million ($)

1.2

400 1

300 0.75

200 0.5

0.4

100 0.25

17.08
0 0

C# (Cold) NodeJs (Cold)

Language Runtime

Cost Per Million Requests ($)

Cold-Start

Performance

0000zl
o008

00°0vLL

00°0801
000901
00°0%0L
00201
000001
00086

00'0¥6
00'0Z6
00'006
00088
00'098
00°0¥8
00'0Z8
00°008
00'08L
00'09L

0'0¥L
00'0ZL
00°00£
00089
00°099
00°0¥9
00'029
00°009
00°08S

0'09%
00°0%S
00028
00°00S

0'08%
00°09%
00°0¥¥
00'0Z¥
00°00%
00'08€
00°09€
00'0¥€

Execution Time (ms)

00002
00081
00°091
00°0¥1
00021
00001
0008
0009
00°0¥
0002
000

; |I.. .Il”'llIll“||||||I|I|||.I||I||.| T

o
o

$30UBINJ2Q 8101

Results Analysis - AWS vs Azure

AWS vs

] Aws Nodejs AZU re
J\ [[

O Azure NodeJs

AWS NodeJS COld Start

Azure Node)S | | e o

1 1 1 1 1 1 1

0 200 400 600 800 1000 1200

Execution Time (ms)

AWS vs Azure C# NET Warm Start

B Azurec# [Awsc#

Azure C#

15 20

Execution Time (ms)

Cost Analysis

TPS Cost Calculations

AWS Lambda
Language | Cost Per | Cost Per | Cost Per Cost Per
Runtime Day @ Day @ Year @ Year @
100-TPS | 30k-TPS | 100-TPS 30k-TPS
C# NET $50.34 $15,101 $18,373 | (55,511,980
Golang $3.53 $1,059 $1,288 S3RE35
Java 8 §10.73 | $3.219 | $3916 [CS1,174,913
NodelJS $3.53 $1,059 $1,288 $386,355
Python $3.53 $1,059 $1,288 $386,355

* Figures based on cold-start times to illustrate potential cost impact

TPS Cost Calculations

Azure Functions

Language

Cost Per Cost Per | Cost Per Cost Per
Runtime Day @ Day @ Year @ Year @

100-TPS 30k-TPS 100-TPS 30k-TPS
NET C# $3.46 | $1,036.80 $1,261 ,
NodelS $10.37 | $3,110.40 $3,784 (| $1,135,296

* Figures based on cold-start times to illustrate potential cost impact

CostHat Model

(Leitner et al. 2016)

Serverless
Performance
Framework
Architecture

30k Function
Invocations based on
1,000 TPS

()

Test Controller
Function

‘

AWS Test

Azure Test
Controller
Function

ﬂ

NET (ere QL
Controller
Function A @
e
@ python

Empty Test
Functions (AWS)

Java (:

Empty Test
Functions (Azure)

NET (ere

Logger Metrics Cost Metrics
Function Function Function

® |_ @
<) % (> < >
no®de NET Ere nede
@

DynamoDB DynamoDB

odc©7

Conclusions &
Future Work

Conclusion

Overall Performance

For optimum performance and
cost-management of serverless
applications, C# .NET is the top
performer for Azure Functions.

Python is clear overall choice on
AWS Lambda.

Conclusion

Cold-Start Performance

The performance of NodeJS in Azure
Functions in cold-start scenarios
demands caution on its usage.

Similarly caution is advised with Java
and especially C# .NET on AWS

Lambda.

Conclusion
Pace of Change

The pace of change in serverless
computing is extremely high - in
features offered, performance
characteristics and cost models.

This constantly shifting environment
requires regular review to ensure

serverless applications are designed

for optimum performance and cost
benefit.

Conclusion
Function Composition

The composition of functions in
serverless applications is a crucial
design decision, which if done in an
appropriately fine-grained manner,

can lead to a more flexible but also
more cost-effective solution in the

long term.

Future Work

e Additional Serverless Platform Testing
o Google Cloud Functions
o |BM OpenWhisk
o OpenLambda

e Real-Time Dashboard
e Additional Test Variables

o Regions / Hardware
o Memory Allocations

e Additional Test Scenarios
o DynamoDB Access
o APl Access
o lLanguage Performance Benchmarking Tests

Questions?

References

e Leitner, P., Cito, J. & Stockli, E. (2016), Modelling and managing
deployment costs of microservice-based cloud applications, in

‘Proceedings of the 9th International Conference on Utility and Cloud
Computing’, ACM, pp. 165-1/4.

