

Benchmarking FaaS Platforms: Call for Community Participation

Jörn Kuhlenkamp | ISE | WoSC 2018 | 20.12.2018

FaaS Example: Matrix Multiplication

How can app developers obtain evidence for quality-driven design decisions?

➔ Benchmarking

Motivation

Select challenges of "good" benchmarking:

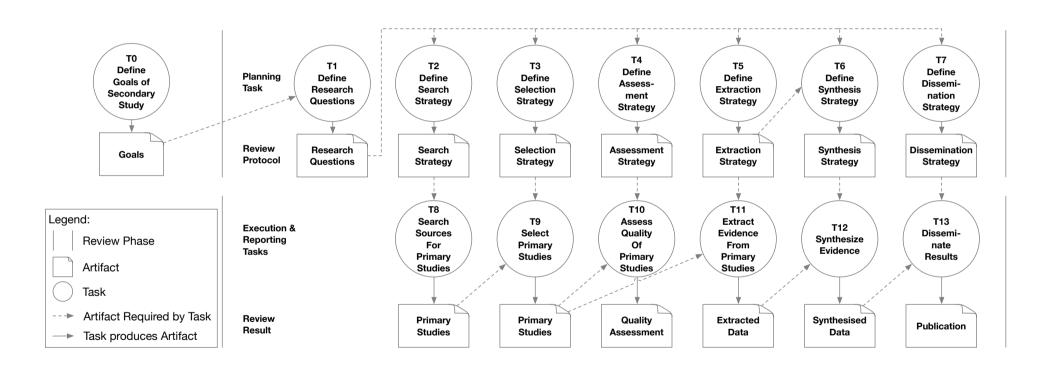
Relevance:	multiple workloads, qualities, and platform features of interest
Reproducibility:	completeness of documented testbed, execution, and results
Fairness:	equal support of different SUTs
Usability:	tooling, cost of execution

→ Highly desirable to build on existing body of work for high quality evidence

How can experimenters accurately and efficiently identify the SOTA for FaaS platform benchmarking?

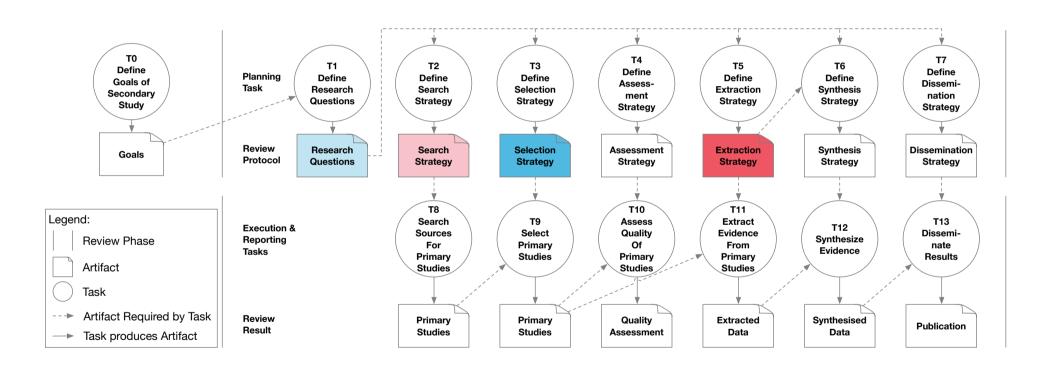
Contributions:

- (1) Review protocol for a systematic literature review (SLR)
- (2) Call for community participation
- (3) Preliminary results



Review Protocol

Overview



Overview

Research Questions	Search	Selection	Extraction
--------------------	--------	-----------	------------

Research Questions	Search	Selection	Extraction
FaaS experiments in literature: SUTs? Treatments? Qualities?			
Designs? Reproducible?			

Research Questions	Search	Selection	Extraction
FaaS experiments in literature: SUTs? Treatments? Qualities? Designs? Reproducible?	Seed: 5 publications Search: Snowballing		

Research Questions	Search	Selection	Extraction
FaaS experiments in literature: SUTs? Treatments? Qualities? Designs? Reproducible?	Seed: 5 publications Search: Snowballing	Scientific? After Jan 1st 2015? FaaS platform is SUT? Experiment? Design? Results?	

Research Questions	Search	Selection	Extraction
FaaS experiments in literature: SUTs? Treatments? Qualities? Designs? Reproducible?	Seed: 5 publications Search: Snowballing	Scientific? After Jan 1st 2015? FaaS platform is SUT? Experiment? Design? Results?	Quality/Features SUT Load Generator Measurements Treatments Analysis

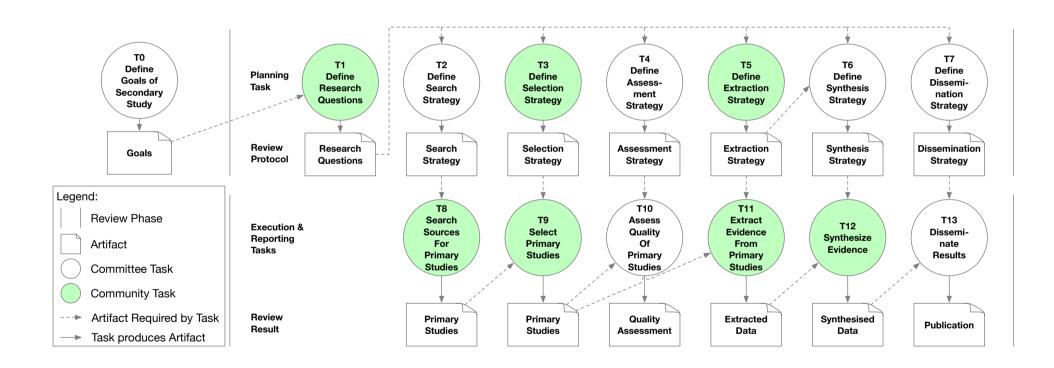
Observed Limitations

Select limitations of review protocol:

- Outdated publications: due to long publication and short development cycles?
- Incomplete experiment descriptions: due to space constraints?
- Researchers are limited resources and tasks are partially hard to automate?
- "Reinventing the wheel/experiment"?

Approach:

- Call for community participation
- Community-driven knowledge base



Call for Participation

Overview

Participation

https://www.tu-berlin.de/?id=199198

Forms for participation in the community tasks are listed below: (T1) Propose Research Question (T3) Propose Criteria (T5) Propose New Column (T8) Propose New Publication (T9) Check criteria for publication (T11) Propose Experiment Data (T12) Add Data Analysis Archive Archive Reference Date Link Image: Propose Participation Image: Propose Participation Image: Propose Participation Image: Propose Participation

	Reference	Date	Link
	001	09/2018	🔼 Link
S	napshot 001		
S	napshot 001		

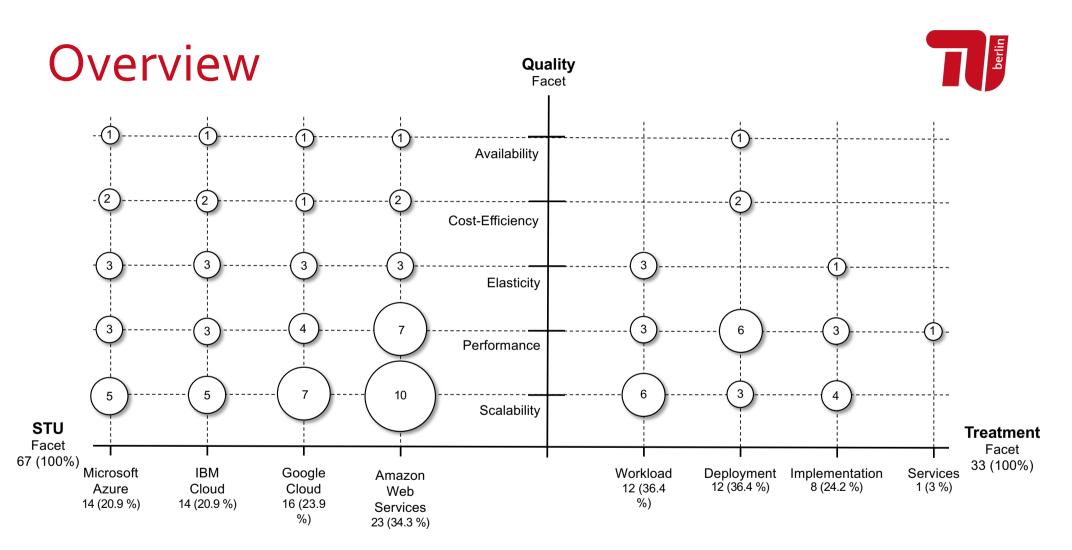
(Personal information, e.g., name, comments, and email, will not be published)

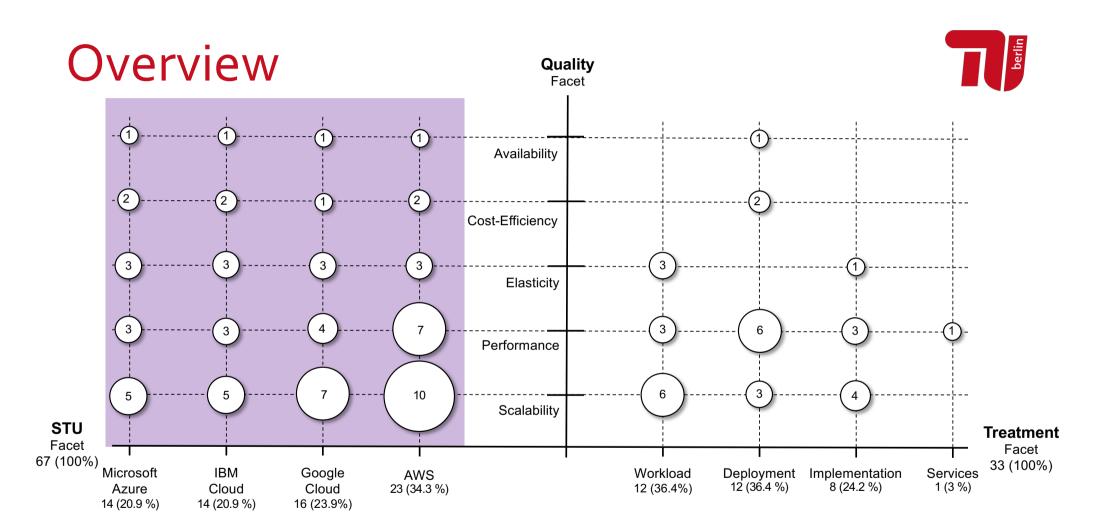
	participating in our review. Please suggest a paper for inclusion in our survey. To l survey, papers must meet the following criteria:
1. Be peer revie 2. Contain at le	wed ast one FaaS-benchmark experiment
At {{link}} you c	an find a list of papers which are already considered in the survey.
* Required	
Paper Ref	erence
Paper title	• *
Your answer	

Year *

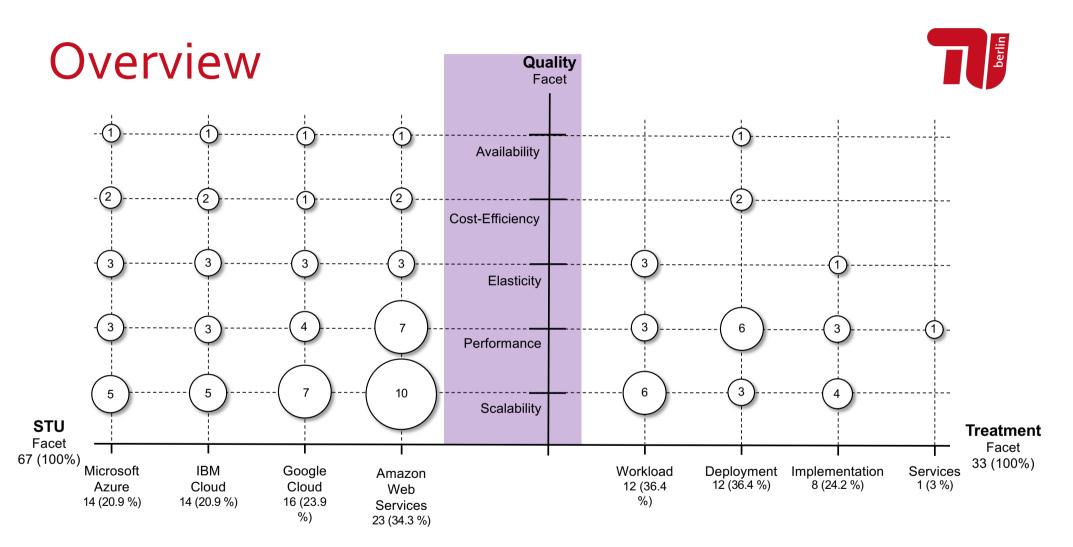
Your answer

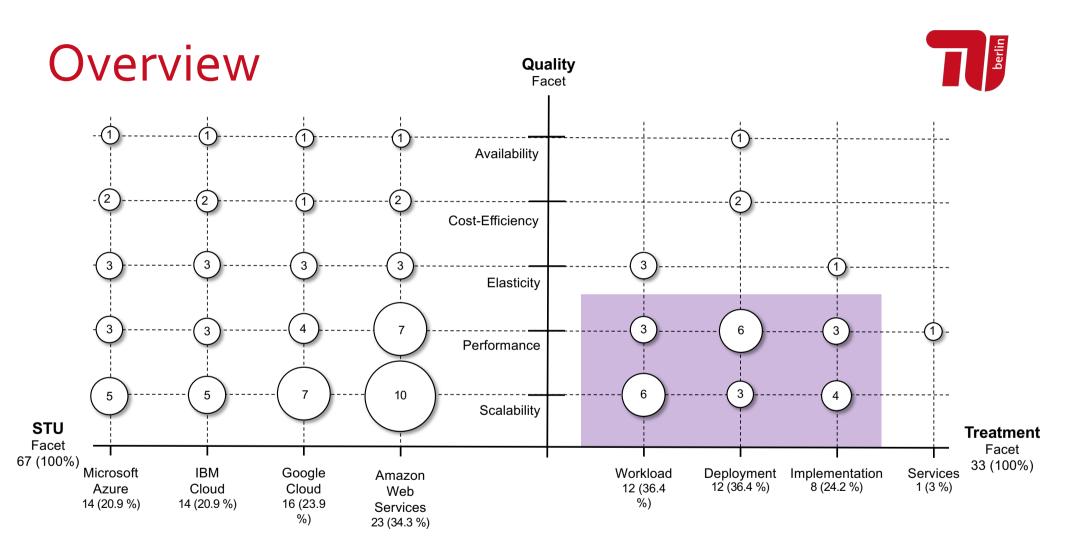
Ex: Select Evidence for Snapshot 001


fx	References												
	А	В	С	D	E	F	G	н	I	J	к	L	М
1		Refe	rences			Ex	p. Goal				Para	ameter	s
2					I			P	arame	ter 1 (P1)	Paramter 2 (P2)		
3	Exp. Ref. [E#]	Exp. Ref Paper	Exp. Name [Text]	Lit. Ref. [#]	Abstraction	Quality	Feature	Name	Unit	Domain	Name	Unit	Domain
4	E1a	E1a	Concurrency Test	1	Feature -	Scalability	Parallel Container Sheduling	Concurrent Pending Req.	#	[1,15]	FaaS Service	Text	{GCF, AWS, AF, IBM}
5	E1b	E1b	Backoff Test	1	Feature -	Elasticity	Depovisioning Time	Time Since Last Execution	m	[1,30]	FaaS Service	Text	{GCF, AWS, AF, IBM}
6	E2a	E2a	Max Requests	2	Feature -	Scalability	-	Concurrent Pending Req.	#k	{0.5, 1, 2, 3, 10}	FaaS Service	Text	{GCF, AWS, AF, IBM}
7	E2b	E2b	Max Cpu Perf.	2	Feature -	Scalability	-	Concurrent Pending Req.	#	{1, 100, 3000}	FaaS Service	Text	{GCF, AWS, AF, IBM}
8	E2c	E2c	Max Disk Perf.	2	Feature -	Scalability	-	Concurrent Pending Req.	#	{1, 100}	FaaS Service	Text	{GCF, AWS, AF, IBM}
9	E2d	E2d	Max Net Perf.	2	Feature -	Scalability	-	Concurrent Pending Req.	#	{1, 100}	FaaS Service	Text	{GCF, AWS, AF, IBM}
10	E2e	E2e	Dynamic Workload	2	Feature -	Elasticity	-	Concurrent Pending Req.	#	[10,90]	FaaS Service	Text	{GCF, AWS, AF, IBM}
11	E2f	E2f	Update Function	2	Feature -	Maintainability	-	Code Version	#	[1,2]	Func. Config.	#	[1,2]
12	E2g	E2g	FaaS vs. VMs	2	N/A 🔻	Cost/Performance		Compute Service	Text	{FaaS, VM}	FaaS Service	Text	{GCF, AWS, AF, IBM}
13	E2h	E2h	Trigger	2	Feature 🔹	Performance	-	Trigger	Text	{HTTP, Object, Database}	FaaS Service	Text	{GCF, AWS, AF, IBM}
14	E2i	E2i	Programming Platform	2	Feature 🔻	Performance	-	Prog. Platform	Text	{Node.js, Java, C#, Pyt 2, Pyt. 3}	FaaS Service	Text	{GCF, AWS, AF, IBM}
15	E3a	E3a	Compute - Fibonacci	3	Feature -	Cost/Performance	CPU*	Func Mem	MB	{128,256,512,1024}	FaaS Service	Text	{AWS, AF, IBM}
16	E3b	E3b	Compute - Pi	3	Application	Performance	Math	Threads	#	[1,20]	FaaS Service	Text	N/A
17	E3c	E3c	I/O - Face Detection	3	Application	Performance	Computer Graphics	Threads	#	[1,20]	FaaS Service	Text	N/A
18	E3d	E3d	Password Cracking	3	Application	Performance	Crypto	Mappers	#	[1,9]	FaaS Service	Text	{AWS, native}
19	E3e	E3e	Precipitation Forecast	3	Application	Scalability	Merelogy	Lines in WL	#	[1,30]	-	-	-
20	E4a	E4a	Load Burst Test	4	Feature -	Elasticity	-	Service	Text	{AWS, BeanStock}	-	-	-
21	E4b	E4b	Start Up Time	4	Feature -	Scalability	Startup Latancy	Service	Text	{AWS, BeanStock}			
22	E5a	E5a	Linpack - Exe. Delay	5	Feature 🔻	Elasticity	Exec Delay	FaaS Service	Text	{AWS, GCF, IBM}	-	-	-
23	E5b	E5b	Linpack - Flops	5	Application	Scalability	Math	FaaS Service	Text	{AWS, GCF, IBM}	Func Mem	MB	{256,512,1024,1536,204
24	E7a	E6a	Supercomputer Test	7	-	Scalability	-	Worker	#	[3600]			
25	E10a	E7a	CPU Benchmark	10	Feature -	Performance	Infrastructure	FaaS Service	Text	{GCF, AWS, AF, AOW}	Function Memory	MB	{128,256,512,1024}
26	E10b	E7b	Overhead	10	-	Performance	Startup Latancy	FaaS Service	Text	{GCF, AWS, AF, AOW}	-	-	-
27	E10c	E7c	Supercomputer Test	10	-	Scalability	-	Fork/Complexity	#	{10,20,,100}	Function Memory	MB	{128,256,512,1024}
28	E11a	E8a	Matrix Mutliplication	11	Application	Scalability	Math	Worker	#	{500,1000,,3000}			
29	E15a	E9a	Image Processing	15	Application	Scalability	Graphics	Request	#	{0,,6000}	-	-	-
30	E30a		Fourier Transformation	30	Feature -	Performance	Math	load	#	[13,,21]	Function Memory	MB	{128,256,512,1024}
31	E30b		Matrix Mutliplication	30	Feature -	Performance	Math	size	#	[1,,10]	Function Memory	MB	{1024,2048}
32	E30c		Sleep	30	Feature -	Performance	Exec Perf.	duration	#	[113]	Function Memory	MB	{128,256,512,1024,204

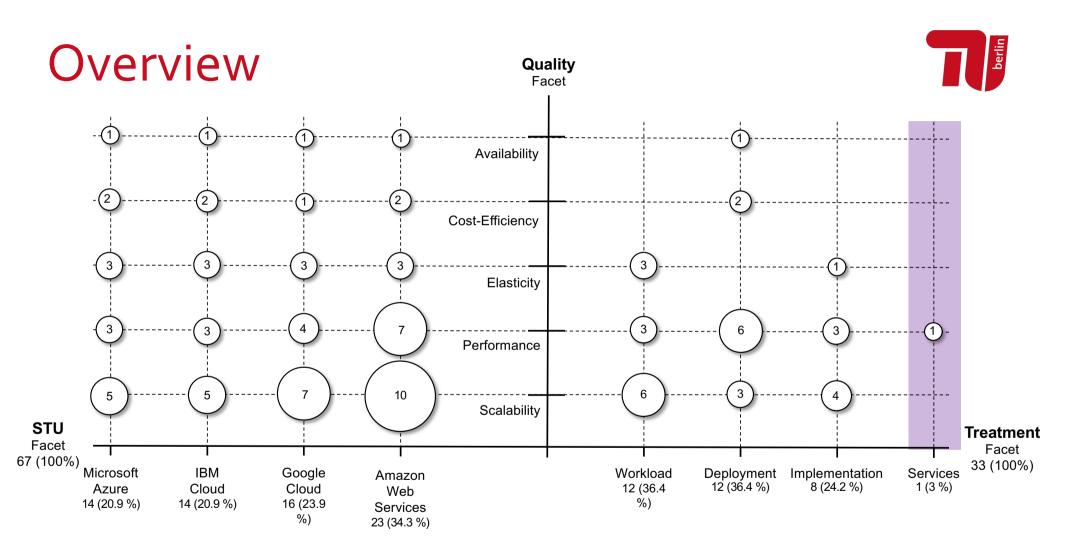


Prelimanry Results









berlin

Designs

- No (de facto) standards
 - Wide variation of approaches and designs
 - Common tool for setup: Serverless-framework
- Deployment package
 - Trivial functions, such as sleep or No-Op functions
 - Trivial algorithms provided in pseudo-code
 - Complex algorithms as ...
 - native FaaS programming code
 - binary packages which are executed using a FaaS wrapper function.
- Workload generation (trigger events)
 - Direct generation by a workload generator
 - Indirect generation by an downstream service

Reproducability

Reference		Workload Gen	erator	Function Impleme	entation		Platform Confi	guration	Services used	R-Score
Pub.	Exp.	Tool	Distance	Functionality	Туре	Sources	Programming Environment	Memory		
[15]	E1a	Perf Tool	Region	Empty	Trivial	yes	js	512	No	4.0
	E1b	Perf Tool	Region	Empty	Trivial	yes	js	512	No	4.0
[20]	E2a	N/A	N/A	N/A	N/A	no	*	512,1536	N/A	1.5
	E2b	N/A	N/A	Matrix Mult.	Native	no	N/A	512,1536	No	2.5
	E2c	N/A	N/A	N/A (IO)	Native	no	N/A	512,1536	No	2.5
	E2d	N/A	N/A	N/A (net)	Native	no	*	512,1536	Yes	3.0
	E2e	N/A	N/A	Fast	Native	no	js	512,1536	No	3.0
	E2f	N/A	N/A	N/A	Native	no	*	512,1536	No	2.5
	E2g	N/A	N/A	N/A	Native	no	Py, js	3000	N/A	2.5
	E2h	N/A	N/A	N/A	N/A	no	N/A	N/A	Yes	1.5
	E2i	N/A	N/A	Wait	Trivial	no	*	N/A	No	2.5
[11]	E3a	N/A	N/A	Fibonacci	Pseudo	yes	Py	128-1024	No	3.0
	E3b	N/A	N/A	PI calculation	Native	no	Py, Py3	N/A	No	2.5
	E3c	N/A	N/A	Face detection	Native	no	Py	N/A	Yes	2.5
	E3d	N/A	N/A	Pwd Cracking	Native	no	Py	512	N/A	2.0
	E3e	HyperFlow	N/A	Weather	Binary	no	Py	N/A	N/A	2.0
[16]	E4a	N/A	N/A	Idle 200ms	Trivial	no	N/A	N/A	Yes	2.0
	E4b	N/A	N/A	Idle 200ms	Trivial	no	N/A	N/A	Yes	2.0
[21]	E5a	Custom	N/A	Linpack	Binary	no	N/A	512	N/A	2.0
	E5b	Custom	N/A	Linpack	Binary	no	N/A	256-2048	N/A	2.0
[22]	E6a	mu	Multi-region	Linpack	Binary	no	mu	N/A	Yes	3.5
[7]	E7a	N/A	Remote	Random gen.	Binary	no	js	128-1024	Yes	3.0
	E7b	N/A	Remote	Linpack	Binary	no	N/A	N/A	Yes	2.5
	E7c	HyperFlow	Remote	Linpack	Binary	no	js	128-1024	No	4.0
[17]	E8a	PyWren	Region	Matrix Mult.	Native	no	Py	N/A	Yes	3.5
[23]	E9a	N/A	N/A	Image Crop	N/A	no	N/A	N/A	Yes	2.5
	ava, C#,	Py, Py3	1				1			

Measurement approach, "raw" measurements, and aggregations?

Reproducability

Referen	nce	Workload Gen	erator	Function Implement	ntation		Platform Confi	guration	Services used	R-Score
Pub.	Exp.	Tool	Distance	Functionality	Туре	Sources	Programming Environment	Memory		
[15]	E1a	Perf Tool	Region	Empty	Trivial	yes	js	512	No	4.0
	E1b	Perf Tool	Region	Empty	Trivial	yes	js	512	No	4.0
[20]	E2a	N/A	N/A	N/A	N/A	no	*	512,1536	N/A	1.5
	E2b	N/A	N/A	Matrix Mult.	Native	no	N/A	512,1536	No	2.5
	E2c	N/A	N/A	N/A (IO)	Native	no	N/A	512,1536	No	2.5
	E2d	N/A	N/A	N/A (net)	Native	no	*	512,1536	Yes	3.0
	E2e	N/A	N/A	Fast	Native	no	js	512,1536	No	3.0
	E2f	N/A	N/A	N/A	Native	no	*	512,1536	No	2.5
	E2g	N/A	N/A	N/A	Native	no	Py, js	3000	N/A	2.5
	E2h	N/A	N/A	N/A	N/A	no	N/A	N/A	Yes	1.5
	E2i	N/A	N/A	Wait	Trivial	no	*	N/A	No	2.5
[11]	E3a	N/A	N/A	Fibonacci	Pseudo	yes	Ру	128-1024	No	3.0
	E3b	N/A	N/A	PI calculation	Native	no	Py, Py3	N/A	No	2.5
	E3c	N/A	N/A	Face detection	Native	no	Py	N/A	Yes	2.5
	E3d	N/A	N/A	Pwd Cracking	Native	no	Py	512	N/A	2.0
	E3e	HyperFlow	N/A	Weather	Binary	no	Ру	N/A	N/A	2.0
[16]	E4a	N/A	N/A	Idle 200ms	Trivial	no	N/A	N/A	Yes	2.0
	E4b	N/A	N/A	Idle 200ms	Trivial	no	N/A	N/A	Yes	2.0
[21]	E5a	Custom	N/A	Linpack	Binary	no	N/A	512	N/A	2.0
	E5b	Custom	N/A	Linpack	Binary	no	N/A	256-2048	N/A	2.0
[22]	E6a	mu	Multi-region	Linpack	Binary	no	mu	N/A	Yes	3.5
[7]	E7a	N/A	Remote	Random gen.	Binary	no	js	128-1024	Yes	3.0
	E7b	N/A	Remote	Linpack	Binary	no	N/A	N/A	Yes	2.5
	E7c	HyperFlow	Remote	Linpack	Binary	no	js	128-1024	No	4.0
[17]	E8a	PyWren	Region	Matrix Mult.	Native	no	Ру	N/A	Yes	3.5
[23]	E9a	N/A	N/A	Image Crop	N/A	no	N/A	N/A	Yes	2.5
* = js, Ja	ava, C#, 1	Py, Py3			-					

Measurement approach, "raw" measurements, and aggregations?

Reproducability

Referen	nce	Workload Gen	erator	Function Implement	ntation		Platform Confi	guration	Services used	R-Score
Pub.	Exp.	Tool	Distance	Functionality	Туре	Sources	Programming Environment	Memory		
[15]	E1a	Perf Tool	Region	Empty	Trivial	yes	js	512	No	4.0
	E1b	Perf Tool	Region	Empty	Trivial	yes	js	512	No	4.0
[20]	E2a	N/A	N/A	N/A	N/A	no	*	512,1536	N/A	1.5
	E2b	N/A	N/A	Matrix Mult.	Native	no	N/A	512,1536	No	2.5
	E2c	N/A	N/A	N/A (IO)	Native	no	N/A	512,1536	No	2.5
	E2d	N/A	N/A	N/A (net)	Native	no	*	512,1536	Yes	3.0
	E2e	N/A	N/A	Fast	Native	no	js	512,1536	No	3.0
	E2f	N/A	N/A	N/A	Native	no	*	512,1536	No	2.5
	E2g	N/A	N/A	N/A	Native	no	Py, js	3000	N/A	2.5
	E2h	N/A	N/A	N/A	N/A	no	N/A	N/A	Yes	1.5
	E2i	N/A	N/A	Wait	Trivial	no	*	N/A	No	2.5
[11]	E3a	N/A	N/A	Fibonacci	Pseudo	yes	Ру	128-1024	No	3.0
	E3b	N/A	N/A	PI calculation	Native	no	Py, Py3	N/A	No	2.5
	E3c	N/A	N/A	Face detection	Native	no	Ру	N/A	Yes	2.5
	E3d	N/A	N/A	Pwd Cracking	Native	no	Py	512	N/A	2.0
	E3e	HyperFlow	N/A	Weather	Binary	no	Ру	N/A	N/A	2.0
[16]	E4a	N/A	N/A	Idle 200ms	Trivial	no	N/A	N/A	Yes	2.0
	E4b	N/A	N/A	Idle 200ms	Trivial	no	N/A	N/A	Yes	2.0
[21]	E5a	Custom	N/A	Linpack	Binary	no	N/A	512	N/A	2.0
	E5b	Custom	N/A	Linpack	Binary	no	N/A	256-2048	N/A	2.0
[22]	E6a	mu	Multi-region	Linpack	Binary	no	mu	N/A	Yes	3.5
[7]	E7a	N/A	Remote	Random gen.	Binary	no	js	128-1024	Yes	3.0
	E7b	N/A	Remote	Linpack	Binary	no	N/A	N/A	Yes	2.5
	E7c	HyperFlow	Remote	Linpack	Binary	no	js	128-1024	No	4.0
[17]	E8a	PyWren	Region	Matrix Mult.	Native	no	Py	N/A	Yes	3.5
[23]	E9a	N/A	N/A	Image Crop	N/A	no	N/A	N/A	Yes	2.5
* = js, Ja	ava, C#, 1	Py, Py3	•							

Measurement approach, "raw" measurements, and aggregations?

Conclusion

- Considerable existing body of work
- Single function performance/scalability ⇔ cost-efficiency, service compositions → relevance?
- Rare publishing of implementations/toolkits and "raw" measurements → reproducibility/verifiability?

Please participate!

https://www.tu-berlin.de/?id=199198

Future work

- Reproduction of experiments with full disclosure of tools and results
- Completion of SLR
- Development of a serverless app for continuous SLR support

Thank You!

Jörn Kuhlenkamp jk@ise.tu-berlin.de

Sebastian Werner <u>sw@ise.tu-berlin.de</u>

