Efficient Management of
Ephemeral Data In
Serverless Computing

Patrick Stuedi
IBM Research

* Serverless frameworks are increasingly being used for
Interactive analytics

(:ggg'jg) @ databricks
serverless

gg: The Stanford Builder

* Serverless frameworks are increasingly being used for
Interactive analytics

— Exploit massive parallelism with large number of serverless

tasks
User query A A A A A

& =i A A A)\~) === Result
input data A A A A A

* Serverless analytics involve multiple stages of execution

* Serverless tasks need an efficient way to communicated

Jntermediate data between different stages
ephemeral data

! AT A
ser guery A
& ﬁ =) ﬂ)\q A ﬁ Result
input data A A

* Ephemeral data is exchanged directly between
the tasks

mapper,

reducer,
mapper,

Mapper, reducer,
mapper, g

Direct communication between serverless tasks is difficult

— Tasks are short lived and stateless

mapper
‘an ’
reducer,
Mapper; o o
?
MaPPe mm reducer,
mapper; m m

Direct communication between serverless tasks is difficult

— Tasks are short lived and stateless

mapper,

reducer,
mapper,
Mapper, reducer,

Direct communication between serverless tasks is difficult

— Tasks are short lived and stateless

mapper
‘2.]
educer
mapper; o o 0
MaPPe mm reducer,

@ High performance for a wide range of object sizes

Ephemeral I/0 Size

1.0
[gg cmake
0.81 video analytics
i.... sortl00GB
0.6 L
0.4

\.
JWide range of 1/O sizes

102

10°

104 10°
I/O size (bytes)

10°

107

108

(bytes to 100s of MBs)

AN J

Thus, an ephemeral storage
system should support high
throughput and low latency.

@ High performance for a wide range of object sizes
© Fine grain, pay what you use resource billing

L VM 1 D[

5 Finding the Pareto optimal

per%g?rrrgﬂge?{:ost g o resource allocation is non-

tradeoff for a < trivial...and gets harder
serverless ‘§ with multiple jobs.
video analytics g o

application

@ High performance for a wide range of object sizes
© Fine grain, pay what you use resource billing
© Fadli-teteranee

@ High performance for a wide range of object sizes
© Fine grain, pay what you use resource billing
© Fadli-teteranee

Existing cloud storage systems do not meet the elasticity,
performance and cost demands of serverless analytics jobs

© serverless Spark

- Add serverless properties to Spark (elasticity, on-
demand scaling, etc)

© Pocket: elastic ephemeral storage for the cloud

- Improve applications running on serverless
frameworks in the cloud (AWS A, IBM Cloud
Functions, etc)

e

500
T a0 Example:
2 Sorting 100GB
8 300
Q
2
‘© 200
£
£ 100
>
g H =

AWS A Databricks Databricks Spark Spark
Serverless Standard On-premise On-premise++

~ Increasing flexibilty
- Increasing performance

Spark/On-Premise++: Running Apache Spark on a High-Performance Cluster using RDMA and NVMe Flash, Spark Summit’17

* Scheduler: when to best add/remove resources?

* Container startup: may have to dynamically
Spin up containers

* Storage overheads:

— Input data needs to be fetched from remote storage (e.g., S3)

- Intermediate needs to be temporarily stored on remote storage
(S3, Redis)

500

400

300

200

100

Runtime [seconds]

Shuffle overheads are significantly higher when intermediate data is stored remotely

60%

AWS A

Databricks
Serverless

Databricks
Standard

Shuffle 1/0
m Compute
B Input/Output

. 10
Spark M
On-premise On-premise++ 0

60

38%

Spark Spark
On-premise On-premise++

Instead of improving performance of serverless frameworks, can we...
* ...add serverless properties to Spark?

— Elasticity, on-demand scaling

— Sharing of a Spark resources (compute, memory) among users
* Use Case:

— Enable sharing of Spark deployment among many users in a company,
research lab, etc.

* Challenge:
— Maintain original Spark performance

Spark Serverless: What’s missing?

Worker

Worker Worker
- Doooooo -

In-me'mory I‘:ilesystem
cache
(MemStore)

Spark Serverless: What’s missing?

[!! u !] loosing
Intermediate

I
Scale-down data/state!
event ,

Worker

Worker erE——
Doooooo

In-me'mory Fllesystem
cache
(MemStore)

Disaggregation of Ephemeral Data

Spatcaten
\

Worker Worker Worker
ninlnininlnln

""""""" T g ok
P s : >

o e LI e
e - BOOEEEE @ S

Disaggregation of Ephemeral Data

Scale-down
W\ event Data/state
Worker Worker Worker available
when
OoooooQ _executor
disappears

| L 4
¥ M ™ Ne[gwork
- ¥’ . = 1" re=========== - F -
DRAM tier t _______ I abric

L L L1 E L0 B | Bt

Flash tier .

Spark-Serverless Architecture

send schedule

register

send job DAG

register

Intermediate data Iaunch assign
task application

Apache
. . rengt

crail.apache.org

Intermedia
data

Architecture Overview

send schedule

register

- T
Driver
send job DAG
Intermediate data Iaunch assign
task application
Apache
reglst

|
Intermedla Executor

data

crail.apache.org

register

Architecture Overview

send schedule

register

- T
Driver
send job DAG
Intermediate data Iaunch assign
task application
Apache
reglst ‘
. . ‘
|

crail.apache.org

register

Intermedia Executor
data

Architecture Overview

send schedule

register

\J

Intermediate data

Apache

4//—\
Driver
send job DAG

Iaunch assign
task application
reglst ‘

Intermedla Executor
data

crail.apache.org

Executors get
dynamically
re-assigned to
apps/drivers

Application 1:
GridSearch

Application 3:
QL TPC-DS

HCL
Scheduler

Activities [Terminal ~

d, 1), ('tree_method', 'hist'), (‘max_depth’, 2),
, 'binary:logistic'), ('nthread’, 16), (‘eta’, 0.1),

('max_biny, 64), (*num_round’, 5), ('tree method',

Lanbda’, o)1 objactive’, “binary:logistic:).

(*lambda’

0.

« ntmsau‘

1.6), (*max bin’, 64), (‘num_round’,
{1tembdar, 26001, (" objective,

("col wmpv e bytr

round’, ni « ep”\

ive', ' : [
1.0), ('max_bin', 64),

3), (‘lambda’, 1)1, [(*o e,
0.1), (*colsample_bytr 0.8), ('max bin', 64)
d', ‘hist'), ('max_depth’, 5 *, 100)1]

Lexo3. 1/kau/Phd/apps /run.sh --num-executors=o --query=ql

bl oy

177861] [0x0000765151dc700]
177869] [0x00007f65151dc700]
177874] [0x00007f65151dc700]
00007 f64eefdd700]
[6x0000765151dc706]
(6x0000765151dc700]
(0x0000765151dc700]
{0x0000765151dc700]
804399] [0x00007f6dectd9700]
804511] [0x00007f64ectd9700]
[0x0000765151dc700]
[0X00007f65151d
(0x0000764a2744700]

(*tree method®
binary:logistic'),

0), (

0.3),

[info]
warning]
[info]
[info]
[info]
[info]
[warning]
[info]
warning]

[info]

("colsample bytree:, 0.8),
©

-0), ('max_bin', 64), ('num

3), (“lanbda’, 0)1, [(*obje]
(*colsampl

“hist
(*nthread’, 16),

(*num_round", 3), (*tree_methol

)], [("objective’

6), nethod
*binary:logistic'),

'), ('max_depth'

Executer

Executor.

Executor.

Executer

4

3

2

1

100771
10077ms
10151ns el cc
[resourcenanager . cc
urcenanager . cc
[fsauricnonamer cer
s [resourcemanager
[resourcenanager
[resourcemanager . cc
s [resourcenanager. ci
46704ms [heter

II] Recomputing re:
W] Applications s
recomputing resource allocations

e kerIdle for worker 7

ing 1 event(s)

because no ML Library was enabled during compilation.
tionsubmitted for application app-20180529091839-0043

Resource view:
fraction of resources
each app consumes

Executor view:
Which app an executor
currently runs

Executors

SChedUIing SnapShOt) Grid Search

QL

i

Time

Compute cluster size: 8 nodes: IBM Power8 Minsky
Storage cluster size: 8 nodes, IBM Power8 Minsky

Cluster hardware:

- DRAM: 512 GB

— Storage: 4x 1.2 TB NVMe SSD

— Network: 10Gb/s Ethernert, 100Gb/s RoCE
— GPU: NVIDIA P100, NVLink

Workload
- SQL: TCP-DS

Spark-SQL: TPC-DS (Query #87)

(long running query)

14

12

=Y
o
|

Runtime [seconds]

Vanilla HCS/Crall HCS/Crall HCS/Crall
Cluster TCP,10Gb/s TCP,100Gb/s RDMA,100Gb/s

Efficiently disaggregating ephemeral data enables Spark

cluster to grow and shrink without a performance cost

Spark-SQL: TPC-DS (Query #3)

(short running query)
ru/nti@e

-~ ~

4

Spark Cluster

Crail Serverless ntime

0 5 10 15 20 25 30 35

Runtime [seconds]

Short-running queries benefit from the shared (already-up) Spark deployment

* Context: Serverless analytics in the cloud
— AWS A, IBM Cloud Functions, Azure Functions
* Current practice for storing ephemeral data:
- S3:
* High latencies for small data sets
— Redis, AWS ElasticCache:
* Inconvenient for storing large objects
* No dynamic scaling
* Costly (DRAM)
* Can we use Apache Crail?
— Not as is, no dynamic scaling

Pocket

 An elastic distributed data store for ephemeral data
sharing in serverless analytics

& DRAM # Flash = HDD
=~ Pareto frontier

’8* 800 .
= ol . Pocket dynamically
e | rightsizes storage
S | . resources (nodes,
I5 | 1 e media) in an attempt
S . N to find a spot with a
3 o< . RN good performance
a o, price ratio

0 0.05 0.1 0.15 0.2

Resource usage ($/hr)

How Pocket works

1. Throughput allocation
2. Capacity allocation
3. Choice of storage tier(s)

Job A Optional hints about job:
= | atency sensitivity
AAAAAAA * Maximum # of concurrent tasks
AAAAAAA » Total ephemeral data capacity
B * Peak aggregate bandwidth required

", I. Register job

~

Controller >
app-driven resource
allocation & scaling

Metadata server(s)
request routing

Storage server Storage server Storage server Storage server

CPU CPU CPU CPU
Net Net Net Net
HDD Flash DRAM DRAM

Pocket: Resource Utilization
* Comparing Pocket to S3 and Redis

_—

100/

Pocket achieves similar = ™% S3 1/0
performance to Redis mam Compute

w

S

-g 801 but uses NVMe Flash | oy Ephemeral Data 1/0
S P

-

o 60

o MapReduce sort job hints
qé 401 Epherperal 23%0
i— capacity

GJ PR

g 201 Latency sensitive False
— Aggregate 100
j% peak throughput Gb/s

o

S3 Redis Pocket
250 lambdas

Autoscaling a Pocket Cluster

e

6| __. Total GB/s allocated pommes H The controller elastically

—— Total GB/s used I 1 scales resources to

= 5 : : meet the requirements
=z ! | of multiple jobs
Ch I I
5 | : -
33 -tA-- m--—-
§1 I | ! | |
E 2 —— _l [—I e e e e
i
=

1

0

0 50 100 150 200 250 300 350
T i T * Time (s) l
Jobl Jobl Job2 Job3 Job3 Job2

Job hints Job1: Sort Job2: Video analytics Job3: Sort
Latency sensitive False False False
Ephemeral data capacity 10 GB 6 GB 10 GB

Aggregate throughput 3 GB/s 2.5 GB/s 3 GB/s

Serverless frameworks are increasingly being used for interactive analytics

Efficiently managing ephemeral data is important for serverless analytics

2 Projects:

Spark-serverless
— Add support to Spark for fine-grained on-demand scaling

- Permit growing/shrinking of Spark executors by disaggregating shuffle data using Apache Crail

Pocket

— Elastic distributed data store for ephemeral data sharing in serverless analytics

— Can be used together with frameworks like AWS A, IBM Cloud Functions, etc.

Pocket: Ephemeral Storage for Serverless Analytics, OSDI'18
Navigating Storage for Serverless Computing, Usenix ATC’18

Crail: A High-Performance I/O Architecture for Distributed Data
Processing, IEEE Data Bulletin 2017

Running Apache Spark on a High-Performance Cluster Using
RDMA and NVMe Flash, Spark Summit’17

Serverless Machine Learning using Crail, Spark Summit’18

Apache Crall,

http://crail.apache.org/

Ana Klimovic, Yawen Wang, Michael Kaufmann, Adrian

Schuepbach, Jonas Pfefferle, Animesh Trivedi, Bernard
Metzler

Slides (Intro & Pocket) from Pocket presentation
(OSDI'18, Ana Klimovic)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

