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* Serverless frameworks are increasingly being used for
Interactive analytics
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* Serverless frameworks are increasingly being used for
Interactive analytics

— Exploit massive parallelism with large number of serverless

tasks
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* Serverless analytics involve multiple stages of execution

* Serverless tasks need an efficient way to communicated

Jntermediate data between different stages
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* Ephemeral data is exchanged directly between
the tasks
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Direct communication between serverless tasks is difficult

— Tasks are short lived and stateless
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@ High performance for a wide range of object sizes
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Thus, an ephemeral storage
system should support high
throughput and low latency.




@ High performance for a wide range of object sizes
© Fine grain, pay what you use resource billing

L VM 1 D[

5 Finding the Pareto optimal

per%g?rrrgﬂge?{:ost g o resource allocation is non-

tradeoff for a < trivial...and gets harder
serverless ‘§ with multiple jobs.
video analytics g o

application




@ High performance for a wide range of object sizes
© Fine grain, pay what you use resource billing
© Fadli-teteranee




@ High performance for a wide range of object sizes
© Fine grain, pay what you use resource billing
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Existing cloud storage systems do not meet the elasticity,
performance and cost demands of serverless analytics jobs




© serverless Spark

- Add serverless properties to Spark (elasticity, on-
demand scaling, etc)

© Pocket: elastic ephemeral storage for the cloud

- Improve applications running on serverless
frameworks in the cloud (AWS A, IBM Cloud
Functions, etc)
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~ Increasing flexibilty
- Increasing performance

Spark/On-Premise++: Running Apache Spark on a High-Performance Cluster using RDMA and NVMe Flash, Spark Summit’17




* Scheduler: when to best add/remove resources?

* Container startup: may have to dynamically
Spin up containers

* Storage overheads:

— Input data needs to be fetched from remote storage (e.g., S3)

- Intermediate needs to be temporarily stored on remote storage
(S3, Redis)
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Instead of improving performance of serverless frameworks, can we...
* ...add serverless properties to Spark?

— Elasticity, on-demand scaling

— Sharing of a Spark resources (compute, memory) among users
* Use Case:

— Enable sharing of Spark deployment among many users in a company,
research lab, etc.

* Challenge:
— Maintain original Spark performance



Spark Serverless: What’s missing?
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Spark Serverless: What’s missing?
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Disaggregation of Ephemeral Data
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Disaggregation of Ephemeral Data
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Spark-Serverless Architecture
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Architecture Overview
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Architecture Overview
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Application 1:
GridSearch

Application 3:
QL TPC-DS
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Compute cluster size: 8 nodes: IBM Power8 Minsky
Storage cluster size: 8 nodes, IBM Power8 Minsky

Cluster hardware:

- DRAM: 512 GB

— Storage: 4x 1.2 TB NVMe SSD

— Network: 10Gb/s Ethernert, 100Gb/s RoCE
— GPU: NVIDIA P100, NVLink

Workload
- SQL: TCP-DS



Spark-SQL: TPC-DS (Query #87)

(long running query)
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Efficiently disaggregating ephemeral data enables Spark

cluster to grow and shrink without a performance cost



Spark-SQL: TPC-DS (Query #3)

(short running query)
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Short-running queries benefit from the shared (already-up) Spark deployment




* Context: Serverless analytics in the cloud
— AWS A, IBM Cloud Functions, Azure Functions
* Current practice for storing ephemeral data:
- S3:
* High latencies for small data sets
— Redis, AWS ElasticCache:
* Inconvenient for storing large objects
* No dynamic scaling
* Costly (DRAM)
* Can we use Apache Crail?
— Not as is, no dynamic scaling



Pocket

 An elastic distributed data store for ephemeral data
sharing in serverless analytics
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How Pocket works

1. Throughput allocation
2. Capacity allocation
3. Choice of storage tier(s)
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Pocket: Resource Utilization
* Comparing Pocket to S3 and Redis
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Autoscaling a Pocket Cluster
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Serverless frameworks are increasingly being used for interactive analytics

Efficiently managing ephemeral data is important for serverless analytics

2 Projects:

Spark-serverless
— Add support to Spark for fine-grained on-demand scaling

- Permit growing/shrinking of Spark executors by disaggregating shuffle data using Apache Crail

Pocket

— Elastic distributed data store for ephemeral data sharing in serverless analytics

— Can be used together with frameworks like AWS A, IBM Cloud Functions, etc.



Pocket: Ephemeral Storage for Serverless Analytics, OSDI'18
Navigating Storage for Serverless Computing, Usenix ATC’18

Crail: A High-Performance I/O Architecture for Distributed Data
Processing, IEEE Data Bulletin 2017

Running Apache Spark on a High-Performance Cluster Using
RDMA and NVMe Flash, Spark Summit’17

Serverless Machine Learning using Crail, Spark Summit’18

Apache Crall,



http://crail.apache.org/

Ana Klimovic, Yawen Wang, Michael Kaufmann, Adrian

Schuepbach, Jonas Pfefferle, Animesh Trivedi, Bernard
Metzler

Slides (Intro & Pocket) from Pocket presentation
(OSDI'18, Ana Klimovic)
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