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● Serverless analytics involve multiple stages of execution

● Serverless tasks need an efficient way to communicated 
intermediate data between different stages 

Challenge: Data Sharing

ephemeral data



● Ephemeral data is exchanged directly between 
the tasks

In traditional analytics..
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● Direct communication between serverless tasks is difficult

– Tasks are short lived and stateless
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Existing cloud storage systems do not meet the elasticity, 
performance and cost demands of serverless analytics jobs



● Serverless Spark 
– Add serverless properties to Spark (elasticity, on-

demand scaling, etc)
● Pocket: elastic ephemeral storage for the cloud

– Improve applications running on serverless 
frameworks in the cloud (AWS λ, IBM Cloud 
Functions, etc)

Serverless Analytics: 2 Projects
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Project 1:

Spark Serverless Motivation
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put your #assignedhashtag here by setting the footer in view-header/footer
● Scheduler: when to best add/remove resources?

● Container startup: may have to dynamically 
spin up containers

● Storage overheads: 
– Input data needs to be fetched from remote storage (e.g., S3)

– Intermediate needs to be temporarily stored on remote storage 
(S3, Redis) 

Why is it so hard?



I/O Overhead: Sorting 100GB

AWS Lambda Spark Serverless Spark Cloud Spark Cluster Spark HPC
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Instead of improving performance of serverless frameworks, can we…
● ...add serverless properties to Spark?

– Elasticity, on-demand scaling
– Sharing of a Spark resources (compute, memory) among users

● Use Case:
– Enable sharing of Spark deployment among many users in a company, 

research lab, etc.
● Challenge:

– Maintain original Spark performance 

Spark Serverless: Idea



Spark Serverless: What’s missing?
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Spark-Serverless Architecture
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Video: Putting things together

Application 1:
GridSearch

Application 2:
SQL TPC-DS

Application 3:
SQL TPC-DS

HCL
Scheduler

Resource view:
fraction of resources
each app consumes

Executor view:
Which app an executor
currently runs
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put your #assignedhashtag here by setting the footer in view-header/footer● Compute cluster size: 8 nodes: IBM Power8 Minsky

● Storage cluster size: 8 nodes, IBM Power8 Minsky 

● Cluster hardware:
– DRAM: 512 GB

– Storage: 4x 1.2 TB NVMe SSD

– Network: 10Gb/s Ethernert, 100Gb/s RoCE

– GPU: NVIDIA P100, NVLink

● Workload
– SQL: TCP-DS

Let’s look at performance...



Spark-SQL: TPC-DS (Query #87)
(long running query)

Spark Cluster Simple Serverless HCS/CRAIL/TCP HCS/CRAIL/RDMA
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Efficiently disaggregating ephemeral data enables Spark 
cluster to grow and shrink without a performance cost
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Short-running queries benefit from the shared (already-up) Spark deployment

Spark-SQL: TPC-DS (Query #3)
(short running query)
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● Context: Serverless analytics in the cloud 
– AWS λ, IBM Cloud Functions, Azure Functions

● Current practice for storing ephemeral data:
– S3: 

● High latencies for small data sets
– Redis, AWS ElasticCache: 

● Inconvenient for storing large objects
● No dynamic scaling
● Costly (DRAM)

● Can we use Apache Crail?
– Not as is, no dynamic scaling

Project 2: 

Serverless Analytics in the Cloud



Pocket
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Pocket dynamically
rightsizes storage
resources (nodes,

media) in an attempt
to find a spot with a
good performance

price ratio

● An elastic distributed data store for ephemeral data 
sharing in serverless analytics



How Pocket works



Pocket: Resource Utilization
● Comparing Pocket to S3 and Redis



Autoscaling a Pocket Cluster



put your #assignedhashtag here by setting the footer in view-header/footer● Serverless frameworks are increasingly being used for interactive analytics

● Efficiently managing ephemeral data is important for serverless analytics

2 Projects:

● Spark-serverless
– Add support to Spark for fine-grained on-demand scaling 

– Permit growing/shrinking of Spark executors by disaggregating shuffle data using Apache Crail

● Pocket
– Elastic distributed data store for ephemeral data sharing in serverless analytics

– Can be used together with frameworks like AWS λ, IBM Cloud Functions, etc.

Conclusion



put your #assignedhashtag here by setting the footer in view-header/footer● Pocket: Ephemeral Storage for Serverless Analytics, OSDI’18 

● Navigating Storage for Serverless Computing, Usenix ATC’18

● Crail: A High-Performance I/O Architecture for Distributed Data 
Processing, IEEE Data Bulletin 2017

● Running Apache Spark on a High-Performance Cluster Using 
RDMA and NVMe Flash, Spark Summit’17

● Serverless Machine Learning using Crail, Spark Summit’18

● Apache Crail, http://crail.apache.org
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