Efficient Management of Ephemeral Data in Serverless Computing

Patrick Stuedi IBM Research

Serverless Analytics

• Serverless frameworks are increasingly being used for interactive analytics

PyWren E (SoCC'17) (

ExCamera (NSDI'17)

gg: The Stanford Builder

Amazon Aurora Serverless

Serverless Analytics

- Serverless frameworks are increasingly being used for interactive analytics
 - Exploit massive parallelism with large number of serverless tasks

Challenge: Data Sharing

- Serverless analytics involve multiple stages of execution
- Serverless tasks need an efficient way to communicated **intermediate data** between different stages

In traditional analytics..

• Ephemeral data is exchanged directly between the tasks

In serverless analytics..

- Direct communication between serverless tasks is difficult
 - Tasks are short lived and stateless

In serverless analytics..

- Direct communication between serverless tasks is difficult
 - Tasks are short lived and stateless

In serverless analytics..

- Direct communication between serverless tasks is difficult
 - Tasks are short lived and stateless

1 High performance for a wide range of object sizes

High performance for a wide range of object sizes
 Fine grain, pay what you use resource billing

- High performance for a wide range of object sizes
 Fine grain, pay what you use recourse billing
- 2 Fine grain, pay what you use resource billing
- 3 Fault-tolerance

High performance for a wide range of object sizes
 Fine grain, pay what you use resource billing
 Fault-tolerance

Existing cloud storage systems do not meet the elasticity, performance and cost demands of serverless analytics jobs

Serverless Analytics: 2 Projects

Serverless Spark

- Add serverless properties to Spark (elasticity, ondemand scaling, etc)
- 2 Pocket: elastic ephemeral storage for the cloud
 - Improve applications running on serverless frameworks in the cloud (AWS λ , IBM Cloud Functions, etc)

Project 1: Spark Serverless Motivation

Spark/On-Premise++: Running Apache Spark on a High-Performance Cluster using RDMA and NVMe Flash, Spark Summit'17

Why is it so hard?

- Scheduler: when to best add/remove resources?
- **Container startup:** may have to dynamically spin up containers
- Storage overheads:
 - Input data needs to be fetched from remote storage (e.g., S3)
 - Intermediate needs to be temporarily stored on remote storage (S3, Redis)

I/O Overhead: Sorting 100GB

Shuffle overheads are significantly higher when intermediate data is stored remotely

Spark Serverless: Idea

Instead of improving performance of serverless frameworks, can we...

- ...add serverless properties to Spark?
 - Elasticity, on-demand scaling
 - Sharing of a Spark resources (compute, memory) among users
- Use Case:
 - Enable sharing of Spark deployment among many users in a company, research lab, etc.
- Challenge:
 - Maintain original Spark performance

Spark Serverless: What's missing?

Spark Serverless: What's missing?

Disaggregation of Ephemeral Data

Disaggregation of Ephemeral Data

Spark-Serverless Architecture

Architecture Overview

crail.apache.org

Architecture Overview

crail.apache.org

Architecture Overview

crail.apache.org

Video: Putting things together

Let's look at performance...

- Compute cluster size: 8 nodes: IBM Power8 Minsky
- Storage cluster size: 8 nodes, IBM Power8 Minsky
- Cluster hardware:
 - DRAM: 512 GB
 - Storage: 4x 1.2 TB NVMe SSD
 - Network: 10Gb/s Ethernert, 100Gb/s RoCE
 - GPU: NVIDIA P100, NVLink
- Workload
 - SQL: TCP-DS

Spark-SQL: TPC-DS (Query #87) (long running query)

Efficiently disaggregating ephemeral data enables Spark cluster to grow and shrink without a performance cost

Spark-SQL: TPC-DS (Query #3) (short running query) job

Short-running queries benefit from the shared (already-up) Spark deployment

Project 2: Serverless Analytics in the Cloud

- · Context: Serverless analytics in the cloud
 - [–] AWS λ , IBM Cloud Functions, Azure Functions
- Current practice for storing ephemeral data:
 - S3:
 - High latencies for small data sets
 - Redis, AWS ElasticCache:
 - Inconvenient for storing large objects
 - No dynamic scaling
 - Costly (DRAM)
- Can we use Apache Crail?
 - Not as is, no dynamic scaling

Pocket

• An elastic distributed data store for ephemeral data sharing in serverless analytics

How Pocket works

Pocket: Resource Utilization

Comparing Pocket to S3 and Redis

Autoscaling a Pocket Cluster

Job hints	Job1: Sort	Job2: Video analytics	Job3: Sort
Latency sensitive	False	False	False
Ephemeral data capacity	10 GB	6 GB	10 GB
Aggregate throughput	3 GB/s	2.5 GB/s	3 GB/s

Conclusion

- Serverless frameworks are increasingly being used for **interactive analytics**
- Efficiently managing ephemeral data is important for serverless analytics

2 Projects:

- Spark-serverless
 - Add support to Spark for fine-grained on-demand scaling
 - Permit growing/shrinking of Spark executors by disaggregating shuffle data using Apache Crail
- Pocket
 - Elastic distributed data store for ephemeral data sharing in serverless analytics
 - Can be used together with frameworks like AWS λ , IBM Cloud Functions, etc.

References

- Pocket: Ephemeral Storage for Serverless Analytics, **OSDI'18**
- Navigating Storage for Serverless Computing, Usenix ATC'18
- Crail: A High-Performance I/O Architecture for Distributed Data Processing, IEEE Data Bulletin 2017
- Running Apache Spark on a High-Performance Cluster Using RDMA and NVMe Flash, **Spark Summit'17**
- Serverless Machine Learning using Crail, **Spark Summit'18**
- Apache Crail, http://crail.apache.org

Thanks to

Ana Klimovic, Yawen Wang, Michael Kaufmann, Adrian Schuepbach, Jonas Pfefferle, Animesh Trivedi, Bernard Metzler

Slides (Intro & Pocket) from Pocket presentation (OSDI'18, Ana Klimovic)