
Patrick Stuedi
IBM Research

Efficient Management of
Ephemeral Data in
Serverless Computing

● Serverless frameworks are increasingly being used for
interactive analytics

Exploit massive parallelism with large number of serverless
tasks

Serverless Analytics

● Serverless frameworks are increasingly being used for
interactive analytics
– Exploit massive parallelism with large number of serverless

tasks

Serverless Analytics

● Serverless analytics involve multiple stages of execution

● Serverless tasks need an efficient way to communicated
intermediate data between different stages

Challenge: Data Sharing

ephemeral data

● Ephemeral data is exchanged directly between
the tasks

In traditional analytics..

mapper0

mapper1

mapper2

mapper3

reducer0

reducer1

● Direct communication between serverless tasks is difficult

– Tasks are short lived and stateless

In serverless analytics..

mapper0

mapper1

mapper2

mapper3

reducer0

reducer1
?

● Direct communication between serverless tasks is difficult

– Tasks are short lived and stateless

In serverless analytics..

mapper0

mapper1

mapper2

reducer0

reducer1

● Direct communication between serverless tasks is difficult

– Tasks are short lived and stateless

In serverless analytics..

mapper0

mapper1

mapper2

reducer0

reducer1

● High performance for a wide range of object sizes

Exploit massive parallelism with large number
of serverless tasks

Requirements for
Ephemeral Storage
1

● High performance for a wide range of object sizes
● Fine grain, pay what you use resource billing

Requirements for
Ephemeral Storage
1

2

Example of
performance-cost

tradeoff for a
serverless

video analytics
application

● High performance for a wide range of object sizes
● Fine grain, pay what you use resource billing
● Fault-tolerance

Requirements for
Ephemeral Storage
1

2

3

● High performance for a wide range of object sizes
● Fine grain, pay what you use resource billing
● Fault-tolerance

Requirements for
Ephemeral Storage
1

2

3

Existing cloud storage systems do not meet the elasticity,
performance and cost demands of serverless analytics jobs

● Serverless Spark
– Add serverless properties to Spark (elasticity, on-

demand scaling, etc)
● Pocket: elastic ephemeral storage for the cloud

– Improve applications running on serverless
frameworks in the cloud (AWS λ, IBM Cloud
Functions, etc)

Serverless Analytics: 2 Projects

1

2

Project 1:

Spark Serverless Motivation

AWS Lambda Spark Serverless Spark Cloud On-Premise On-Premise
0

100

200

300

400

500

Increasing flexibility
Increasing performance

Example:
Sorting 100GB

 AWS λ Databricks Databricks Spark Spark
 Serverless Standard On-premise On-premise++

Spark/On-Premise++: Running Apache Spark on a High-Performance Cluster using RDMA and NVMe Flash, Spark Summit’17

R
un

tim
e

 [
se

co
nd

s]

put your #assignedhashtag here by setting the footer in view-header/footer
● Scheduler: when to best add/remove resources?

● Container startup: may have to dynamically
spin up containers

● Storage overheads:
– Input data needs to be fetched from remote storage (e.g., S3)

– Intermediate needs to be temporarily stored on remote storage
(S3, Redis)

Why is it so hard?

I/O Overhead: Sorting 100GB

AWS Lambda Spark Serverless Spark Cloud Spark Cluster Spark HPC
0

100

200

300

400

500 Shuffle I/O
Compute
Input/Output

60%

22%

18%

Spark Cluster Spark HPC
0

10

20

30

40

50

60

Shuffle overheads are significantly higher when intermediate data is stored remotely

19%

49%

32%

38%
3%
59% AWS λ Databricks Databricks Spark Spark

 Serverless Standard On-premise On-premise++
 Spark Spark
 On-premise On-premise++

R
un

tim
e

 [
se

co
nd

s]

Instead of improving performance of serverless frameworks, can we…
● ...add serverless properties to Spark?

– Elasticity, on-demand scaling
– Sharing of a Spark resources (compute, memory) among users

● Use Case:
– Enable sharing of Spark deployment among many users in a company,

research lab, etc.
● Challenge:

– Maintain original Spark performance

Spark Serverless: Idea

Spark Serverless: What’s missing?

SparkContext

Task

Executor

Worker

In-memory
cache
(MemStore)

Filesystem

Task

Executor

Worker

Task

Executor

Worker

Spark Serverless: What’s missing?

SparkContext

Task

Executor

Worker

In-memory
cache
(MemStore)

Filesystem

Task

Executor

Worker

Task

Executor

Worker

loosing
Intermediate
data/state!Scale-down

event

Disaggregation of Ephemeral Data

SparkContext

Task

Executor

Worker

Task

Executor

Worker

Task

Executor

Worker

Network
Fabric

Disaggregated
Storage

DRAM tier

Flash tier

Disaggregation of Ephemeral Data

SparkContext

Task

Executor

Worker

Task

Executor

Worker

Task

Executor

Worker

Network
Fabric

Disaggregated
Storage

DRAM tier

Flash tier

Scale-down
event Data/state

available
when

executor
disappears

Spark-Serverless Architecture

Driver HCS/
Scheduler

ExecutorDRAM
tier

Intermediate data

Intermediate
data

send schedule

register

Flash
tier

send job DAG

register

assign
application

register

launch
task

crail.apache.org

Architecture Overview

Driver HCS/
Scheduler

ExecutorDRAM
tier

send schedule

register

Flash
tier

send job DAG

register

assign
application

register

launch
task

crail.apache.org

Intermediate
data

Intermediate data

Architecture Overview

Driver HCS/
Scheduler

ExecutorDRAM
tier

send schedule

register

Flash
tier

send job DAG

register

assign
application

register

launch
task

crail.apache.org

Intermediate
data

Intermediate data

Architecture Overview

Driver HCS/
Scheduler

ExecutorDRAM
tier

send schedule

register

Flash
tier

send job DAG

register

assign
application

register

launch
task

Executors get
dynamically

re-assigned to
apps/drivers

crail.apache.org

Intermediate
data

Intermediate data

Video: Putting things together

Application 1:
GridSearch

Application 2:
SQL TPC-DS

Application 3:
SQL TPC-DS

HCL
Scheduler

Resource view:
fraction of resources
each app consumes

Executor view:
Which app an executor
currently runs

Scheduling Snapshot
E

xe
cu

to
rs

Time

Grid Search
SQL

put your #assignedhashtag here by setting the footer in view-header/footer● Compute cluster size: 8 nodes: IBM Power8 Minsky

● Storage cluster size: 8 nodes, IBM Power8 Minsky

● Cluster hardware:
– DRAM: 512 GB

– Storage: 4x 1.2 TB NVMe SSD

– Network: 10Gb/s Ethernert, 100Gb/s RoCE

– GPU: NVIDIA P100, NVLink

● Workload
– SQL: TCP-DS

Let’s look at performance...

Spark-SQL: TPC-DS (Query #87)
(long running query)

Spark Cluster Simple Serverless HCS/CRAIL/TCP HCS/CRAIL/RDMA
0

2

4

6

8

10

12

14
R

un
tim

e
[s

ec
on

ds
]

Vanilla
Cluster

HCS/Crail
TCP,10Gb/s

HCS/Crail
TCP,100Gb/s

HCS/Crail
RDMA,100Gb/s

Efficiently disaggregating ephemeral data enables Spark
cluster to grow and shrink without a performance cost

 Runtime [seconds]

Short-running queries benefit from the shared (already-up) Spark deployment

Spark-SQL: TPC-DS (Query #3)
(short running query)

Warm serverless

Crail Serverless

Spark Cluster

0 5 10 15 20 25 30 35

query
runtime

job
runtime

● Context: Serverless analytics in the cloud
– AWS λ, IBM Cloud Functions, Azure Functions

● Current practice for storing ephemeral data:
– S3:

● High latencies for small data sets
– Redis, AWS ElasticCache:

● Inconvenient for storing large objects
● No dynamic scaling
● Costly (DRAM)

● Can we use Apache Crail?
– Not as is, no dynamic scaling

Project 2:

Serverless Analytics in the Cloud

Pocket

Resource usage ($/hr)

E
xe

cu
tio

n
tim

e
(s

ec
)

Pocket dynamically
rightsizes storage
resources (nodes,

media) in an attempt
to find a spot with a
good performance

price ratio

● An elastic distributed data store for ephemeral data
sharing in serverless analytics

How Pocket works

Pocket: Resource Utilization
● Comparing Pocket to S3 and Redis

Autoscaling a Pocket Cluster

put your #assignedhashtag here by setting the footer in view-header/footer● Serverless frameworks are increasingly being used for interactive analytics

● Efficiently managing ephemeral data is important for serverless analytics

2 Projects:

● Spark-serverless
– Add support to Spark for fine-grained on-demand scaling

– Permit growing/shrinking of Spark executors by disaggregating shuffle data using Apache Crail

● Pocket
– Elastic distributed data store for ephemeral data sharing in serverless analytics

– Can be used together with frameworks like AWS λ, IBM Cloud Functions, etc.

Conclusion

put your #assignedhashtag here by setting the footer in view-header/footer● Pocket: Ephemeral Storage for Serverless Analytics, OSDI’18

● Navigating Storage for Serverless Computing, Usenix ATC’18

● Crail: A High-Performance I/O Architecture for Distributed Data
Processing, IEEE Data Bulletin 2017

● Running Apache Spark on a High-Performance Cluster Using
RDMA and NVMe Flash, Spark Summit’17

● Serverless Machine Learning using Crail, Spark Summit’18

● Apache Crail, http://crail.apache.org

References

http://crail.apache.org/

Thanks to

Ana Klimovic, Yawen Wang, Michael Kaufmann, Adrian
Schuepbach, Jonas Pfefferle, Animesh Trivedi, Bernard
Metzler

Slides (Intro & Pocket) from Pocket presentation
(OSDI’18, Ana Klimovic)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

