@rabbah - Workshop on Serverless Computing 2019

S years ago
Amazon announced...

@rabbah - Workshop on Serverless Computing 2019

iInstantly reactive
functions

let main = () => ({
msg: “Hello World”

),

@rabbah - Workshop on Serverless Computing 2019

event a ! response

@rabbah - Workshop on Serverless Computing 2019

@rabbah - Workshop on Serverless Computing 2019

‘example”

> let hello = ..
> open bit.ly/hello-£fn

http://bit.ly/hello-fn

no Server logic

server.route(‘/hello’,

let main = () => ({
msg: “Hello World”
}

)

server.listen(port)

no Server at all

server.route(‘/hello’,

let main = () => ({
msg: “Hello World”
}

)

server.listen(port)

highly concurrent by default

Running 10s test @ https://apigcp.nimbella.io/api/vl1/web/rabbahgm-rg@c4xagzcl/default/hello. json
10 threads and 10 connections
Thread Stats Avg Stdev Max +/- Stdev
Latency 43.8oms 30.24ms 284.3bms 91.30%

Reqg/Sec 25.36 /.86 40.00 83.12%
2482 requests 1n 10.06s, 1.19MB read
Requests/sec: 246 .04
Transfer/sec: 120 .90KB

@rabbah - Workshop on Serverless Computing 2019

@rabbah - Workshop on Serverless Computing 2019

@rabbah - Workshop on Serverless Computing 2019

Serverless benefits

@rabbah - Workshop on Serverless Computing 2019

103 concurrency In seconds

106 operations < $0.25

@rabbah - Workshop on Serverless Computing 2019

Outsourcing Everyday Jobs to Thousands = €p it
of Cloud Functions with gg

Encoding, Fast and Slow: Low-Latency Video Processing
JADJAD ¥ ADI, FRANCI! ROMERO, DAN ITER, QIAN ALEX OZDEMIR Using Thousands of Tiny Threads
Y HUY IATTERJEE, MATEI ZAHARIA HRIST cYR AND KEITH WINSTEIN Sadjad Fouladi, Riad S. Wahby, and Brennan Shacklett, Stanford University;
Karthikeyan Vasuki Balasubramaniam, University of California, San Diego;
William Zeng, Stanford University; Rahul Bhalerao, University of California, San Diego;

Anirudh Sivaraman, Massachusetts Institute of Technology;
George Porter, University of California, San Diego; Keith Winstein, Stanford University

https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/fouladi

Occupy the Cloud: Distributed Computing for the 99% This paper is included in the Proceedings of the
14th USENIX Symposium on Networked Systems

Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, Benjamin Recht Design and Implementation (NSDI 17).
University of California, Berkeley March 27-29, 2017 - Boston, MA, USA
{jonas, gifan, shivaram, istoica, brecht} @eecs.berkeley.edu ISBN 976-1-931971-37:9
ABSTRACT target on-premise installations at large scale. On commercial cloud
Distributed computing remains inaccessible to a large number of p']alforms. a novice user co.nfronts a dizzying array of potential deci-
users, in spite of many open source platforms and extensive com- sions: one must ahead of time decide on instance type, cluster size,
mercial offerings. While distributed computation frameworks have P"i‘“ghm:"dﬁl- programming “:Od:" and task gm““!i"‘}" o

numpywren: Serverless Linear Algebra

PyWren: Real-time Elastic Execution
Vaishaal Shankar!, Karl Krauth!, Qifan Pul,
PyWren is a system we built to enable incredibly scalable executio Eric Jonas!, Shivaram Venkataraman?, Ion Stoica', Benjamin Recht!, and Jonathan Ragan-Kelley!
on the cloud using AWS Lambda (and other "serverless" framewor |
mean it -- you can nearly-instantly run your code on literally thous 2UW Madison
overhead, all billed in 100ms-increments.

o

Abstract 100k~ , : 8 __
PyWren began as a . . . S 2 1 --- Working SetSize “@
: f | Linear algebra operations are widely used in scientific § 75k N —— Maximum Threads g o
series or exp oratory 45 8 - computing and machine learning applications. However, = | r‘ﬂ 2
bIOg posts loo klng at 40 - it is challenging for scientists and data analysts to run lin- E 50k | | | \H 48
the compute sca lin g 35 ear algebra at.scales be).fond a single machine. Tra}ditional % 25K \ﬂ_ 2%’
- 60 approaches either require access to supercomputing clus- = J LI_I LI_I L|_| I‘LI |_L|‘|:~]:|\ S

and 10 sgalmg of ters, or impose configuration and cluster management 0 A

End

Amazon's cloud Start

services, and
blossomed into a
joint project between

challenges. In this paper we show how the disaggregation Time

P PGP, ISRy DR PN S | PO I T ISR, PRI |

per-core
GFLOPS hist

iggregate TFLOPS
N
3
aggregate GB/s
i
o

3

@rabbah - Workshop on Serverless Computing 2019

It IS not all academic.

The @’@%@/@m/xy ;QObOt @ BenChIing THOMSON REUTERS

<-'::u::i1re'a/lOnel NORDSTROM

$100M+ investor backed

serverless startups
in 2018

@rabbah - Workshop on Serverless Computing 2019

@rabbah - Workshop on Serverless Computing 2019

@rabbah - Workshop on Serverless Computing 2019

Increasing automation & abstraction are
engrained in the history of computing.

\k"s o ‘ 5 »~
IBM 704
1954

@rabbah - Workshop on Serverless Computing 2019

Increasing automation & abstraction are
engrained in the history of computing.

Infra. Platform Function

as a as a as a
Service Service Service

$ / machine $ / hour $ / request

@rabbah - Workshop on Serverless Computing 2019

2015
2 Billion Lambdas / day

2019
2+ Trillion / month

@rabbah - Workshop on Serverless Computing 2019

Serverless is inevitable.

@rabbah - Workshop on Serverless Computing 2019

AWS

re:[Nvent 2019
AWS re:lnvent Livestream Dr. Wemer Vogels

COST OF COSTTO
COMPUTE BUILD

30% 30% Abl | |ty tO
20x Innovate

DEPLOYMENT
FREQUENCY

@rabbah - Workshop on Serverless Computing 2019

My Serverless Conjecture

The number of servers
managed by an organization
will decrease in half every 2 years.

@rabbah - Workshop on Serverless Computing 2019

@rabbah - Workshop on Serverless Computing 2019

Function Isolation

Input
JSON

function main() {
return {

-
()
=
©
fpd
C msg: “Hello World”
®)
@

stdout stderr
String String

v v

@rabbah - Workshop on Serverless Computing 2019

Output
JSON

4

Serverless Elasticity

resource isolation and provisioning

[

[

(I T ’
-
containers

500ms

Container Lifecycle

run

create Initialize delete

r@————————> @---{-=Z—==---.

container container

function concurrency
———————————————————————————————————————-

Ae|ap uoilndaxs uoiloun)

vendor costs (resources)

rless Computing 2019

@rabbah - Workshop on Serve

Serverless Tensions

scale infinitely vs control costs
execute instantly ' finite resources

bit.ly/serverless-contract

@rabbah - Workshop on Serverless Computing 2019

Serverless Contract

‘X % of the time the function will start
to execute iIn Y milliseconds

bit.ly/serverless-contract

@rabbah - Workshop on Serverless Computing 2019

Serverless Contract

Arrival Rate
A events / seconds

Drain Rate
D functions / seconds

@rabbah - Workshop on Serverless Computing 2019

Serverless Contract

A < D: queuing latency ~ O

The system is over-provisioned.

@rabbah - Workshop on Serverless Computing 2019

Serverless Contract

A ~ D: queuing latency ~ O

Balanced but difficult to achieve
with dynamic load.

@rabbah - Workshop on Serverless Computing 2019

Serverless Contract

A > D: queuing latency & mismatch

The system is under-provisioned.

@rabbah - Workshop on Serverless Computing 2019

50ms 100ms 0.5s

hello

1000 activations | Today at 6:55:27 PM | ~1m

Summary ‘ Grid

@rabbah - Workshop on Serverless Computing 2019

) activation list PM

Queueing Delays Container Initialization Execution Time Failures
|

AN,
9998da082 Ams] Today at 6:56:45 PM

25ba9ebab ams -26ms
729ae2d48 5ms +32ms
5h368ba47 2ms -53ms
10e90d350 3ms i -9ms
c6af1d472 105ms Pz -77ms
ac248c8ba 8ms | +63ms
fhod6ad8t e | +8ms
c9ba56333 3ms -48ms

60b192206 7ms -29ms

E gg 151-160 items of 1534 ‘ < ‘ >

@rabbah - Workshop on Serverless Computing 2019

B|n Packlng Scheduler

Server Server server

AXAIA
AXARA
AXARAL (ARANA

AXARAL (ARARA

@rabbah - Workshop on Serverless Computing 2019

MICRO 2019 A

Architectural Implications of Function-as-a-Service Computing

Mohammad Shahrad Jonathan Balkind David Wentzlaft
Princeton University Princeton University Princeton University
Princeton, USA Princeton, USA Princeton, USA

mshahrad@princeton.edu jbalkind@princeton.edu wentzlaf@princeton.edu

ABSTRACT !
..)) . Network c =

Serverless computing is a rapidly growing cloud application model, £ 2%
popularized by Amazon’s Lambda platform. Serverless cloud ser- Scheduling £ g3
vices provide fine-grained provisioning of resources, which scale a g 'CSL
automatically with user demand. Function-as-a-Service (FaaS) appli- Queueing ==
cations follow this serverless model, with the developer providing interference | » 327 decrease in IPC
their application as a set of functions which are executed in response 6x variation due to due to interference
to a user- or system-generated event. Functions are designed to invocation pattern Lemory BW =

: . : : : pattern 20x MPKI for .
be short-lived and execute inside containers or virtual machines, . Branch MPKI | » . v 2
_) '] >10x exec time short functions c a
introducing a range of system-level overheads. This paper studies for short functions «<| Cold Start & 2
the architectural implications of this emerging paradigm. Using (500ms cold start) - Up to 20x ch
the commercial-grade Apache OpenWhisk FaaS platform on real Container |~ | wdown
servers, this work investigates and identifies the architectural im- c iz

xecution

plications of FaaS serverless computing. The workloads, along with
the way that FaaS inherently interleaves short functions from many
tenants frustrates many of the locality-preserving architectural
structures common in modern processors. In particular, we find
that: FaaS containerization brings up to 20x slowdown compared
to native execution, cold-start can be over 10x a short function’s

Figure 1: We characterize the server-level overheads of
Function-as-a-Service applications, compared to native exe-
cution. This contrasts with prior work [2-5] which focused
on platform-level or end-to-end issues, relying heavily on
reverse engineering of commercial services’ behavior.

@rabbah - Workshop on Serverless Computing 2019

APACHE

OpenWhisk

github.com/apache/openwhisk

“9

APACHE

4.4K+ stars
845+ forks O

OpenWhisk 165+ contributors

built for the Enterprise and Research

powers |

Adobe |/O

Ru

"

SM Cloud F

me, Nave

JNctions,

, Nimbella, ...

@rabbah - Workshop on Serverless Computing 2019

B Over-invoked Input > Capacity

571 m Capacity Input = Capacity
B Balanced Input < Capacity "‘/

4 w
0 ,
; “! Under-invoked Input << Capacity IN
2 ™
2 3- m“"'d
] "l'“
S ‘,f“
O ’l" 4 o @
= 2 - o e 8) o
L LR ||" O ® °
S | ogut! S
S :
=14 -

0 -

0) 2 4 6 8 10

Time (s)
Figure courtesy of Mohammad Shahrad.

@rabbah - Workshop on Serverless Computing 2019

Latency Breakdown

| Under-invoked | | Balanced | | Over-invoked |

g 1000 -) "

g .'I: ms :.-‘. \ / '\r
@ o ° o.‘. .oo

s N S ((A) Cold Starts)
u .: - : .~‘. O.; a
2 B

=

O g - - 1 1 I 1 I

Figure courtesy of Mohammad Shahrad.

@rabbah - Workshop on Serverless Computing 2019

function
initialization

wait time

in queue

Latency Breakdown

| Under-invoked |

1000 A
ms

un
o
o

L

| Balanced | | Over-invoked |

L]
PR

.
3
L]

:.“t. .
T\@A) Cold Star@/ '

2000 A
ms

. EB) Emptyini)
; RUCHC < | (C) Increasing
L 4 Queue

Figure courtesy of Mohammad Shahrad.

@rabbah - Workshop on Serverless Computing 2019

function

wait time

execution

Latency Breakdown

| Under-invoked | | Balanced |

| Over-invoked |

S 1000 - "
: mS :..\ . \ / F ”
B 0.‘- .n‘
N e e . e ((A) Cold Starts)
T 500 = T
=
=
0 f = . 1 I I I I
g y ' EB) Emptyin{)
) - ¢ :
> 2000 K HueUe . [(C) Increasing
ol % ! Queue
.E I .o .l
0 i - - | || 1 1 1
300 -
ms . A A
)
§ 49 (D) Large | |°
+ Variations
100 NN
Pe ce® ?‘o.ss. -3 :.:

@rabbah - Workshop on Serverless Computing 2019

Serverless Elasticity

resource isolation and provisioning

9
[A
T}
-

Isolates containers
5ms 500ms

{Fg unik & Firecracker
unikernels micro-vms

100ms

@rabbah - Workshop on Serverless Comput ing 2019

AWS

e INnvent
2019

Web Traffic

860

req / sec

- Provisioned capacity

Latency

160

Over-provisioned

Web Traffic

100

req / sec

— Provisioned capacity

Latency

101

@rabbah - Workshop on Serverless Computing 2019

F"éﬂnvent 2019 i, FireCFGCker

Web Traffic

859

req / sec

Latency

109

@rabbah - Workshop on Serverless Computing 2019

A RISCy Analogy

IF - ID - EX —> WR

@rabbah - Workshop on Serverless Computing 2019

A RISCy Analogy

IF - ID - EX —> WR

v
Fetch function from Object Store.

Cache it for repeated execution.

Decode and determine resources
to allocate for function: container,

memory, CPU, GPU ...

\ 4
Write the result of the execution

back to the Data Store.

Execute the function, sending it
the input arguments, and
capturing its result as the output.

@rabbah - Workshop on Serverless Computing 2019

A RISCy Analogy

Branch Prediction : Function Prediction
Speculation : Pre-Warming
Register Bypass : Function to Function

Serverless Contract

functions run in finite time and space

...and have transient residency

@rabbah - Workshop on Serverless Computing 2019

death Is certain
but revival is fast

Onward! ‘17

Can compositions of serverless
functions be serverless functions?

The Computing Stack

Applications

Libraries, DSLs
Compilers
Runtime & OS
ISA

Micro Architecture

@rabbah - Workshop on Serverless Computing 2019

Function Composition

| func;uon | funcétlon | func(::tlon

@rabbah - Workshop on Serverless Computing 2019

Function Orchestration

where is “main”?

client-based scheduler scheduler as a function
scheduled scheduler as
by client function

explicit reflective
activations activations
function A function B function C function D

fusing scheduler function continuation scheduling

function B function C function D

main
o local function
. calls

A y’ 4 A trigger fire i
function A function B function C function D :

acjivations

completion
trigger

completion completion completion
trigger trigger trigger

@rabbah - Workshop on Serverless Computing 2019

Client-side Composition?

scheduler
as client

explicit
activations

composition cannot be further composed:
substitution

@rabbah - Workshop on Serverless Computing 2019

Reflective Composition?

scheduler
aS fu n Ct i O n external scheduler is active

explicit scheduler invokes
activations functions
unction Is active

sequencing via reflective invocation

function A function B function C

function D

scheduler waits for functions to complete:
double billing

@rabbah - Workshop on Serverless Computing 2019

Composition by Fusion?

let fused = |

. M . local function IS == -y inlined code for

calls

args => ...,

. sequence
args =>...

E““.-_-‘ b..,v “‘N ~,....,..$]

function A function B function C function D

let scheduler = functions => args =>
functions.reduce(Function.apply, args)

let main = scheduler(fused)

monoglot and requires access to source:
black box

@rabbah - Workshop on Serverless Computing 2019

Continuations?

trigger fireé :élevations A = = >) > B
v v v v function rigger sequencing function

the right direction, but breaks
substitution, double billing, or black box

@rabbah - Workshop on Serverless Computing 2019

Serverless Trilemma

black box double billing
let me compose charge me for functions,
Services or coae \ / not scheduling
substitution

permit blocking invokes
and hierarchical
composition

without intrinsic support, compositions-as-functions
violate at least one constraint

@rabbah - Workshop on Serverless Computing 2019

programming model for
Serverless Composition

Composition with Combinators

composer.sequence (
N
‘B,
cr,
D

‘ AAAAAA

openwhisk Slthub.com/apache/openwhisk-composer

@rabbah - Workshop on Serverless Computing 2019

Function Orchestration

composer.sequence(‘A’, ‘B’', ‘C', ‘'D")

function function
A C

@rabbah - Workshop on Serverless Computing 2019

Control and Data Flow Combinators

Sequence 9 @ @ -

rrue
Branch

false

l false ‘
Loop * true

Parallel —-< * —
—@—

github.com/apache/openwhisk-composer

@rabbah - Workshop on Serverless Computing 2019

From Functions to Y
Serverless Applications

(&)
composer.sequence(=]
*/whisk.system/utils/echo”, =

“${prefix}/extract”,

“${prefix}/fetch.job.id", ==

composer.retain(1
composer.sequence(

composer.retry(3, “${prefix}/fetch.log.url”), = .
“${prefix}/analyze.log’)),

((o)
result, i
P [t]

}) => Object.assign(result, params),

“${prefix}/format.for.slack", =

composer.retain(:
composer.value(slackConfig)), . |

({
result, I
params (ot oot o]

}) => Object.assign(result, params), =]

“/whisk.system/slack/post™) -

github.com/rabbah/travis-to-slack

@rabbah - Workshop on Serverless Computing 2019

The Computing Stack and
Serverless Abstraction Gaps

Applications

Libraries, DSLs
Compilers
Runtime & OS
ISA

Micro Architecture

The Computing Stack and
Serverless Abstraction Gaps

Applications

Libraries, DSLs
Compilers
Runtime & OS
ISA

Cloud Providers as Commodity

Serverless Functions

=

@rabbah - Workshop on Serverless Comput ing 2019

A computer is not just a CPU

The Serverless Instruction Set

The Serverless Instruction Set

Low Latency Function-Function
Function Memory Networking

Cloud Providers as Commodity

@rabbah - Workshop on Serverless Comput ing 2019

The Serverless Instruction Set

the dawn of the
Cloud Computer

e %
; L o i
. | "‘. " = l".i'. - : j

IBM 701 IBM 704 IBM 1620 IBM Stretch
1952 1954 1959 1960

1964: Invention of the Instruction Set Architecture

IBM 360/30 IBM 360/67 IBM 360/91 IBM 360/195
1964 1966 1967 1971

@rabbah - Workshop on Serverless Computing 2019

@rabbah - Workshop on Serverless Computing 2019

Read State /
Memory

Write State /
Memory

Developer
Responsibility

@rabbah - Workshop on Serverless Computing 2019

Read State /
Memory

Read State /
Memory

Logic

Write State /
Memory

Write State /
Memory

Developer
Responsibility

@rabbah - Workshop on Serverless Computing 2019

This 1s hard.

functions have transient residency
transient residency — no data locality

@rabbah - Workshop on Serverless Computing 2019

Formal Foundations of Serverless Computing A OOPSLA

Session: Formalization Chair(s): Eric Koskinen

Unfortunately, the serverless computing abstraction exposes several low-level operational
details that make it hard for programmers to write and reason about their code. This paper
sheds light on this problem by presenting A_A, an operational semantics of the essence of
serverless computing. Despite being a small (half a page) core calculus, A_A models all the
low-level details that serverless functions can observe. To show that A_A is useful, we
present three applications. First, to ease reasoning about code, we present a simplified
naive semantics of serverless execution and precisely characterize when the naive
semantics and A_A coincide. Second, we augment A_A with a key-value store to allow
reasoning about stateful serverless functions. Third, since a handful of serverless platforms
support serverless function composition, we show how to extend A_A with a composition
language and show that our implementation can outperform prior work.

Link to Publication: (4 https://people.cs.umass.edu/~brun/pubs/pubs
/Jangdai9oopsla.pdf

Donald Pinckney

University of Massachusetts
Ambherst

United States

S Abhinav Jangda

University of Massachusetts
Ambherst

Yuriy Brun Arjun Guha

University of Massachusetts University of Massachusetts,
Ambherst Ambherst

United States United States

@rabbah - Workshop on Serverless Computing 2019

—

®

Serverless Operational Semantics

Serverless Functions (f, 2, recv, step £ init)

Functions F =
Function name f €F
Internal states =
Initial state init e F - X
Receive event recvy € v XX — X
Internal step stepy € F XX — X X tWith effe
Values V= JSON, HTT
Commands t=¢
| return(v) Return va
Serverless Platform
Request 1D X =
Instance 1D yi=---
Execution mode m :=idle Idle
| busy(x) Processin
Transition labels (= Internal
| start(f, x, v) Receive v
| stop(x, v) Respond 1
Components C:=FE(f, m, 0, y) Function:
| R(f,x,v) Apply ft
| S(x, v) Respond v

Component set

C={C, -+, Cn}

Casnvxranlacae Crzsrntinsa
Values vi=--- rS
b
| (01, ©2) Tuples
SPL expressions e :=invoke f Invoke serverless functio
| first e Run e to first part of inpr ™
| eg>>e; Sequencing
SPL continuations k :=ret x Response to request
| seq ek In a sequence &
| first v k In first
Components Ci=---
| E(e, v, k) Running program
| E(x,) Waiting program store is free
R(e, x, v) Run program e on v R
| (e, x; v) Runprog c..2dbyy
SPL expressions JSON pattern
e =---|p Run transformation p =v JsoN literal
JSON values [[p1s -, pnl Array
v u=n|b|str|null | {str1:p1, -+, strn : pn} Object
JSON pattern | p1 op p2 Operators
p =v JsoN literal | if (p1) then p; else p3 Conditional
JSON query | [str1 — p1] Update field
q «ce
Conductor
90 A SPL
=
BEGINT ¢
=
5 60
) A A A
- AL A8
3 A A
7 A 2 A &
O A A
ENDT = 3501
8 é A %
R A
o aa A
| | | | | |
DrorT N » ® K RS D > &

@rabbah - Workshop on Serverless Computing 2019

Concurrent Requests

“For its entire history, distributed computing research
modeled capacity as fixed but time as unlimited.

With serverless time is limited, but
capacity is effectively infinite.

This only changes everything.”

Dr. Tim Wagner
Amazon Lambda “inventor”

@rabbah - Workshop on Serverless Computing 2019

