Towards Serverless as Commodity
a Case of Knative

WoSC 2019, Davis, California



Nima Kaviani, PhD Dmitriy Kalinin Michael Maximilien
nkavian@us.ibm.com dkalinin@pivotal.io maxim@us.ibm.com
W @nimak W @dmitriykalinin W @maximilien



Serverless (+)

- IS easier to manage
- Is cost effective



Serverless (-)

very easily results in vendor lock-in



Serverless

“...Is one of the worst
forms of proprietary
lock-in we've ever seen

in the history of humanity”

Alex Polvi - CoreOS CEO

The R Register’

Biting the hand that feeds IT

Reference: https://www.theregister.co.uk/2017/11/06/coreos_kubernetes_v_world/



@ Kelsey Hightower & @kelseyhightower - Oct 23 v

' - % I'm in the same boat regarding the fear of "lock-in". We are addressing this
at GCP by backing our Serverless offerings with open source projects.

Fully managed platforms with an escape hatch for those that need it.

@ ki @dam - Oct 23
Replying to @kelseyhightower
That is a very fair point.

The one contributing factor | hear the most is fear of "lock-in"

Which IMHO means that the other clouds have been more resistant to
changing their business than they could be.

| would LOVE this to be a non-issue.




Kubernetes won the CaaS war



Question is:
who will win the Serverless war?



Kubernetes
S Uuccess e Itis open source

e Itis laaS agnostic

from a Provider's perspective



Kubernetes
S u CCGSS e Declarative operations

e Consistent deployment

from an Operator's perspective



Kubernetes
S u CCGSS e Consistent APl across vendors

e Makes migration easy

from a Developer’s perspective



What would it take for a serverless
platform to repeat Kubernetes’ success?



g Kelsey Hightower &

@kelseyhightower

This is why Knative is important. Innovation
In infrastructure becomes utility once
Interoperability and interchangeability are
possible. It's not about rolling your own

serverless stack, but having enough options
so you don't have to. github.com/knative

John Arundel @bitfield

Lambda and serverless is one of the worst forms of proprietary lock-in that we've
ever seen in the history of humanity. It's seriously as bad as it gets. You'll never be
able to run your application without Amazon's infrastructure
theregister.co.uk/2017/11/06/cor...



Learnings from
Kubernetes

Open source

laaS agnostic

Consistent deployment model
Consistent AP| across vendors



Learnlngs from Open source
Ku bern eteS : laaS agnostic

Consistent deployment model

e Consistent APl across vendors




1. Packaging Contract
CO ns | Ste nt 2. Runtime Invocation Contract
3. Application Invocation Contract
AP I M Od el 4. Execution Model
5. Retry Model
6. Concurrency Model
AWS Lambda 7. Traffic Splitting
Apache OpenWhisk
OpenFaaS
Kubeless Excluding streaming scenarios
Knative or where an open connection to

the service is required.



Packaging Contract

Platform @ Lambda OpenWhisk 4% OpenFaaS Kubeless @ Knative G
Custom OClI Image + OClI Image + OClI Image + OClI Image
Packaging
Custom Custom Custom
Packaging Packaging into Packaging into

OClI Image OCI Image



Runtime Invocation Contract

Definition:
The API boundary between the platform and the runtime

Platform

Lambda A | OpenWhisk 4% OpenFaaS Kubeless @ Knative &
HTTP Service HTTP Service HTTP Service HTTP Service None

(pull based) (push based) (push based) (push based)

Pull from Push to Push to Push to

Lambda API Application Watchdog Application

Runtime Runtime Runtime




Application Invocation Contract

Definition:

The API Boundary between the runtime & application in / out

Platform | Lambda A | OpenWhisk 4% OpenFaa$S Kubeless @ Knative &
JSON JSON Stdin / Stdout Stdin / Stdout HTTP/1
Envelope Envelope HTTP/2

Opt-in HTTP/1

CloudEvents




Execution Model

Sync vs Async

Platform | Lambda OpenWhisk % OpenFaa$S Kubeless @ Knative 0

Sync / Async Sync / Async Sync / Async Sync / Async Sync

Specify Non-Blocking Nom=lEloelslng Pub/Sub trigger
InvocationType | Invocations Invocations Support
(NATS) (Kafka / NATS)
Query with
Invocation id Callback for

results



Retry Model

Only done for async workload!

Platform @ Lambda OpenWhisk 4% OpenFaaS Kubeless @ Knative @
Functional None On timeout None No aysnc
Failures workload =
DeadlLetterQueue No retries

for failures



Concurrency Model & Autoscaling

Platform @ Lambda OpenWhisk 4% OpenFaaS ; Kubeless @ Knative G

Request-based Request-based Request-based Request-based Request-based
Resource-based @ Resource-based | (KPA)
Autoscaling by
queue length Uses Uses Resource-based
Prometheus Kubernetes HPA | (HPA)
metrics to drive No scale-to-zero
autoscaling



Traffic Splitting

Platform

Lambda
Built-in

First class app
revision

OpenWhisk &% OpenFaaS (& | Kubeless

External
Load Balancing

(e.g. nginx)

External
Service-Mesh

Istio / Linkerd

External
Service-Mesh

Istio / Linkerd

@ Knative G

Built-in

First class app
revisions

Managed
Routing



What would be the ideal
design for a
serverless platform?



Packaging OCI Images

COntra Ct 2. Custom Packaging
3. Custom Packaging

Discussion into OCI Image

=



Packaging

COntra Ct 2. Custom Packaging
3. Custom Packaging

Discussion into OCI Image



Runtime

Invocation

Contract 1. Runtime calls Platform

2. Platform calls Runtime
Discussion



Runtime

Invocation
Contract

2. Platform calls Runtime
Discussion



Application

|nVOCat|0n 1. Custom Msg. Envelope
C Ontra Ct 2. Stdin / Stdout
3. HTTP
Discussion 4. HTTP + CloudEvent



Application

InVOCation 1. Custom Msg. Envelope
Contract 2. Stdin / Stdout
3. HTTP

Discussion 4. HTTP + CloudEvent



Execution
1. Sync

Model 2. Async
3. Both

Discussion



Execution
1. Sync

Model 2. Async
3. Both

Discussion



Retry

Model 1. Platform provided

2. Leave it to the client
Discussion



Retry
Model

2. Leave it to the client
Discussion



Concurrency
Model &
_ 1. Pull-based # Req
AUtOSCaI | ng 2. Push-based # Req

. . 3. Resource-based
Discussion



Concurrency

Model &
.
AUtOSCaI | ng 2. Push-based # Req

. . 3. Resource-based
Discussion



Traffic Splitting 7 Native App Revisions
2. Independent Apps

Discussion



Traffic Splitting

2. Independent Apps

Discussion



Questions?



