
Towards Serverless as Commodity
a Case of Knative

WoSC 2019, Davis, California

Nima Kaviani, PhD
nkavian@us.ibm.com

@nimak

Dmitriy Kalinin
dkalinin@pivotal.io

@dmitriykalinin

Michael Maximilien
maxim@us.ibm.com

@maximilien

Serverless (+)
- is easier to manage
- is cost effective

Serverless (-)
very easily results in vendor lock-in

Serverless

“... is one of the worst
forms of proprietary
lock-in we've ever seen
in the history of humanity”
Alex Polvi - CoreOS CEO

Reference: https://www.theregister.co.uk/2017/11/06/coreos_kubernetes_v_world/

Kubernetes won the CaaS war

Question is:
who will win the Serverless war?

Kubernetes won the CaaS war

Kubernetes
Success ● It is open source

● It is IaaS agnostic

from a Provider’s perspective

Kubernetes
Success ● Declarative operations

● Consistent deployment

from an Operator’s perspective

Kubernetes
Success ● Consistent API across vendors

● Makes migration easy

from a Developer’s perspective

What would it take for a serverless
platform to repeat Kubernetes’ success?

Learnings from
Kubernetes

● Open source
● IaaS agnostic
● Consistent deployment model
● Consistent API across vendors

Learnings from
Kubernetes

● Open source
● IaaS agnostic
● Consistent deployment model
● Consistent API across vendors

Consistent
API Model

1. Packaging Contract
2. Runtime Invocation Contract
3. Application Invocation Contract
4. Execution Model
5. Retry Model
6. Concurrency Model
7. Traffic SplittingAWS Lambda

Apache OpenWhisk
OpenFaaS
Kubeless
Knative

Excluding streaming scenarios
or where an open connection to
the service is required.

Packaging Contract

Platform Lambda OpenWhisk OpenFaaS Kubeless Knative

Custom
Packaging

OCI Image +

Custom
Packaging

OCI Image +

Custom
Packaging into
OCI Image

OCI Image +

Custom
Packaging into
OCI Image

OCI Image

Runtime Invocation Contract

Platform Lambda OpenWhisk OpenFaaS Kubeless Knative

HTTP Service
(pull based)

Pull from
Lambda API
Runtime

HTTP Service
(push based)

Push to
Application
Runtime

HTTP Service
(push based)

Push to
Watchdog

HTTP Service
(push based)

Push to
Application
Runtime

None

Definition:
The API boundary between the platform and the runtime

Application Invocation Contract

Platform Lambda OpenWhisk OpenFaaS Kubeless Knative

JSON
Envelope

JSON
Envelope

Opt-in HTTP/1

Stdin / Stdout Stdin / Stdout HTTP/1
HTTP/2
CloudEvents

Definition:
The API Boundary between the runtime & application in / out

Execution Model

Platform Lambda OpenWhisk OpenFaaS Kubeless Knative

Sync / Async

Specify
InvocationType

Sync / Async

Non-Blocking
Invocations

Query with
Invocation id

Sync / Async

Non-Blocking
Invocations
(NATS)

Callback for
results

Sync / Async

Pub/Sub trigger
Support
(Kafka / NATS)

Sync

Sync vs Async

Retry Model

Platform Lambda OpenWhisk OpenFaaS Kubeless Knative

Functional
Failures

DeadLetterQueue

for failures

None On timeout None No aysnc
workload ⇒

No retries

Only done for async workload!

Concurrency Model & Autoscaling

Platform Lambda OpenWhisk OpenFaaS Kubeless Knative

Request-based

Autoscaling by
queue length

Request-based Request-based
Resource-based

Uses
Prometheus
metrics to drive
autoscaling

Request-based
Resource-based

Uses
Kubernetes HPA
No scale-to-zero

Request-based
(KPA)

Resource-based
(HPA)

Traffic Splitting

Platform Lambda OpenWhisk OpenFaaS Kubeless Knative

Built-in

First class app
revision

External
Load Balancing

(e.g. nginx)

External
Service-Mesh

Istio / Linkerd

External
Service-Mesh

Istio / Linkerd

Built-in

First class app
revisions

Managed
Routing

What would be the ideal
design for a

serverless platform?

Packaging
Contract

1. OCI Images
2. Custom Packaging
3. Custom Packaging

into OCI ImageDiscussion

Packaging
Contract

1. OCI Images
2. Custom Packaging
3. Custom Packaging

into OCI ImageDiscussion

Runtime
Invocation
Contract 1. Runtime calls Platform

2. Platform calls Runtime
Discussion

Runtime
Invocation
Contract 1. Runtime calls Platform

2. Platform calls Runtime
Discussion

Application
Invocation
Contract

1. Custom Msg. Envelope
2. Stdin / Stdout
3. HTTP
4. HTTP + CloudEventDiscussion

Application
Invocation
Contract

1. Custom Msg. Envelope
2. Stdin / Stdout
3. HTTP
4. HTTP + CloudEventDiscussion

Execution
Model

1. Sync
2. Async
3. BothDiscussion

Execution
Model

1. Sync
2. Async
3. BothDiscussion

Retry
Model 1. Platform provided

2. Leave it to the client
Discussion

Retry
Model 1. Platform provided

2. Leave it to the client
Discussion

Concurrency
Model &

Autoscaling
1. Pull-based # Req
2. Push-based # Req
3. Resource-basedDiscussion

Concurrency
Model &

Autoscaling
1. Pull-based # Req
2. Push-based # Req
3. Resource-basedDiscussion

Traffic Splitting 1. Native App Revisions
2. Independent Apps

Discussion

Traffic Splitting 1. Native App Revisions
2. Independent Apps

Discussion

Questions?

