FnSched: An Efficient Scheduler
for Serverless Functions

Amoghavarsha Suresh, Anshul Gandhi
PACE Lab, Stony Brook University



Motivation

Serverless computing is becoming popular ’

Features:

AWS Lambda Azure Functions
- Providers responsible for resource management

- Pay-for-what-you-use (runtime)

- Easy deployment: Write your code and ship it! Google Functions

Benefits:

- Increases programmer productivity
- Seemingly infinite scalability



Motivation

- Interest from different domains

-  Edge-Triggered applications: e.g. Web apps, backends, data preprocessing
- Massively Parallel applications: e.g. MapReduce, Stream Processing

- Serverless offers cost benefits: 20¢ per 1M lambda requests

- Ex-Camera [NSDI’17] serverless video encoding is 60x faster and 6x cheaper than VM
based (serverful) solution.

- Interest in serverless computing will rise. For a viable service:

- resource usage is important for the
- Reasonable performance is important for the user

Smart scheduling and resource management is critical
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Increased Interest -> Application diversity

Scheduling challenge 1/3: Application Diversity

Edge-Triggered applications:
- Short-lived, lightweight

- e.g. Web apps, backends, data preprocessing

Massively Parallel applications:

- Long running, computationally intensive

- E.g. MapReduce, Stream Processing
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Scheduling challenge 2/3: Containers

- Serverless applications are hosted on containers o
- Absence of running container results in Cold Start AppllcaFlon
- Cold-Start: Execution
- Application execution is delayed, e.g. ~3s in our setup
- Should minimize the number of cold-starts App S.pec.ific
Initialization
Runtime
Initialization
Container
Creation




Scheduling challenge 3/3: Allocation & Placement

- Strawman: Allocate a core for each application

- However, provider cost will escalate!!

- Solution: Effective packing

Where to place a container?
Whether to colocate a container?
How long should the container be alive?

Whether to add new nodes?




FnSched Approach

Goal: Target a maximum degradation latency and minimize the number of
servers/invokers used.

FnSched Approach

N

Colocation Packing, Proactive Spawning



FnSched: Resource Management

- Popular Serverless platforms tie CPU allocation to memory requirement
- CPU requirement is dependent on the class of applications

ET
MP

- Short running ET apps are severely impacted compared to MP apps
- We need to decouple memory and CPU requirement for effective colocation



FnSched: CPU Shares Algorithm

CPU Shares: Soft limit, decides proportion of CPU during contention

ET
MP

Allocate more of CPU time to short running ET during contention!
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FnSched: CPU Shares Algorithm

CPU Shares: Soft limit, decides proportion of CPU during contention

- When to increase the cpushares?
- How much to increase?
- How to balance the cpu shares?
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FnSched: CPU Shares Algorithm

numUpdates+=1;

latencyRatio = latency/isoLatency;

if latencyRatio > updateLatencyThd then

if numUpdates > numUpdatesThd then

if curShares < perContainerMax then
toAddShares = cpuSharesStep * numConts;

B} i ?
i (iotSharesstnAdiShares) « maxCouShares then numUpdatesThd = When to increase the cpushares:

curShares = curShares + cpuSharesStep ; . 9 HOW mUCh to increase‘p
totShares = totShares + toAddShares )
else
o ReduceShares - - maxCpuShares > How to balance the cpu shares?

(toAddShares/numOtherConts);
rebalanceCpuShares(toReduceShares);
deltaShares = (maxCpuShares - totShares) /

numConts ;
curShares = curShares + deltaShares ;
totShares = maxCpuShares
end

end
end

end
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Multi Node Placement: Packing

Packaging: Greedy algorithm based on data center power management policy.

-1 -2 I-N

Allocate request in the smallest index invoker

Helps to packing requests in as few invokers as possible
With effective packing, higher index invokers can be turned off
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Multi Node Placement: Proactive Spawning

- Packaging: Greedy algorithm based on data center power management policy.

-1

-2

I-N

- Cold Starts: Scheduling on invoker k is followed by proactively spawning an

application container on invoker k+1
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Experimental Setup

OpenWhisk Cluster: 10 VMs

Front-end + control plane: 2 VMs

Invokers: 8 VMs
Distributed services: : CephFS, Database: Redis, Stream
Processing: Apache Kafka
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Controller

Applications:

Edge-Triggered:

N

Invoker-1 O O

Invoker-8

Image Resizing (IR), ~ mmommmmsmemeees |

Distributed Services

Streaming Analytics (SA)

Massively Parallel:
Nearest Neighbors ([N IN)

Ceph
FS

Computational Fluid Dynamic (CFD) solver

latencyThd: 1.15 i.e. maximum of 15% performance degradation
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Single Node Evaluation

- FnSched: Single node resource allocation

- Linux: CPU shares 1024

- OpenWhisk: CPU shares proportional to memory
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Multinode Evaluation: Scaling

- FnSched: Single node resource allocation
- LeastConnections (LC): Choose the invoker with least o
- RoundRobin (RR): Send successive requests to differen:

Packing can scale and
maintain performance
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Multi Node Evaluation: Traces
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Conclusion

Presented a work-in-progress serverless scheduling algorithm based on
colocation + packing

CPU Shares algorithm: Reduces degradation compared to SoA

Packing + Proactive Spawning: Maintains acceptable performance,

While reducing invoker usage by 36% compared to LC, 55% compared to RR
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Q&A



Backup Slides



Future Work

Proactive Spawning : Figure out ~exact number of containers required

Evaluation: Scenarios where colocation opportunities are fewer

Multiple ET applications
ET:MP ratiois >1

Compare against Knative
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FnSched Approach

Goal: Target a maximum degradation latency and minimize the number of

servers/invokers used.

Challenges

Cold-Start

Allocation &
Placement

FnSched Approach

Proactive Spawning

Packing based on data
center power
management policy
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Sensitivity Analysis

Choose parameters for single node resource allocation algorithm. Parameters vary for
application class

- numUpdatesThd: Minimum iterations required before updating cpu-shares

- maxCpuShares: Ceiling of the cpu-shares per container, maximum of 1024

- cpuSharesStep: Per iteration increment of cpu-shares

- updatelatencyThd: Minimum degradation before updating cpu-shares 1.10

Appln numUpdatesThd maxCpuShares cpuSharesStep
Class
ET 5 768 128

MP 3 256 64
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Multi Node Placement: Latency monitoring

Packaging: Greedy algorithm based on data center power management policy.

-1 -2 I-N

Monitor average latency

Based on threshold latency, mark invoker to be in safe, warning, unsafe zone
Capacity of invoker varies by the zone
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