
FnSched: An Efficient Scheduler 
for Serverless Functions

Amoghavarsha Suresh, Anshul Gandhi
PACE Lab, Stony Brook University

1



Motivation 

Serverless computing is becoming popular

Features:

- Providers responsible for resource management

- Pay-for-what-you-use (runtime)

Benefits: 

- Easy deployment: Write your code and ship it!

- Increases programmer productivity

- Seemingly infinite scalability

2



Motivation

- Interest from different domains
- Edge-Triggered applications: e.g. Web apps, backends, data preprocessing

- Massively Parallel applications: e.g. MapReduce, Stream Processing 

- Serverless offers cost benefits: 20₵ per 1M lambda requests

- Ex-Camera [NSDI’17] serverless video encoding is 60x faster and 6x cheaper than VM 

based (serverful) solution.

- Interest in serverless computing will rise. For a viable service: 
- Efficient resource usage @ scale is important for the provider 

- Reasonable performance is important for the user 

Smart scheduling and resource management is critical
3



Outline

- Motivation

- Scheduling Challenges

- FnSched Design

- Evaluation

- Conclusion & Future work

4



Scheduling challenge 1/3: Application Diversity

Increased Interest -> Application diversity

- Edge-Triggered applications:

- Short-lived, lightweight

- e.g. Web apps, backends, data preprocessing

- Massively Parallel applications:

- Long running, computationally intensive

- E.g. MapReduce, Stream Processing

5



Scheduling challenge 2/3: Containers
- Serverless applications are hosted on containers

- Absence of running container results in Cold Start

- Cold-Start: 

- Application execution is delayed, e.g. ~3s in our setup

- Should minimize the number of cold-starts

6

Runtime 
Initialization

App Specific 
Initialization

Container 
Creation

Application 
Execution



Scheduling challenge 3/3: Allocation & Placement

- Strawman: Allocate a core for each application

- However, provider cost will escalate!!

- Solution: Effective packing

- Where to place a container?

- Whether to colocate a container? 

- How long should the container be alive?

- Whether to add new nodes?

7



FnSched Approach
- Goal: Target a maximum degradation latency and minimize the number of 

servers/invokers used.

8

FnSched Approach

Colocation Packing, Proactive Spawning



FnSched: Resource Management

- Short running ET apps are severely impacted compared to MP apps

- We need to decouple memory and CPU requirement for effective colocation

C1 C2 C3 C4

9

- Popular Serverless platforms tie CPU allocation to memory requirement

- CPU requirement is dependent on the class of applications

ET
MP



FnSched: CPU Shares Algorithm

CPU Shares: Soft limit, decides proportion of CPU during contention

C1 C2 C3 C4

ET
MP

Allocate more of CPU time to short running ET during contention!

10



FnSched: CPU Shares Algorithm

CPU Shares: Soft limit, decides proportion of CPU during contention

C1 C2 C3 C4

ET

MP

- When to increase the cpushares?

- How much to increase?

- How to balance the cpu shares?

11



FnSched: CPU Shares Algorithm

- numUpdatesThd→When to increase the cpushares?

- cpuSharesStep → How much to increase?

- maxCpuShares → How to balance the cpu shares?

12



Multi Node Placement: Packing

- Packaging: Greedy algorithm based on data center power management policy. 

- Allocate request in the smallest index invoker

- Helps to packing requests in as few invokers as possible

- With effective packing, higher index invokers can be turned off

I-1 I-2 I-N

13



Multi Node Placement: Proactive Spawning

- Packaging: Greedy algorithm based on data center power management policy. 

- Cold Starts: Scheduling on invoker k is followed by proactively spawning an 

application container on invoker k+1 

I-1 I-2 I-N

14



Outline

- Motivation

- Scheduling Challenges

- FnSched Design

- Evaluation

- Conclusion & Future work

15



Experimental Setup
- OpenWhisk Cluster: 10 VMs

- Front-end + control plane: 2 VMs 

- Invokers: 8 VMs

- Distributed services: Storage: CephFS, Database: Redis, Stream 

Processing: Apache Kafka

- Applications:

- Edge-Triggered: 

- Image Resizing (IR), 

- Streaming Analytics (SA)

- Massively Parallel: 

- Nearest Neighbors (NN)

- Computational Fluid Dynamic (CFD) solver

- latencyThd: 1.15 i.e. maximum of 15% performance degradation
16

HTTP 
Frontend

Controller

Invoker-1 Invoker-8

Ceph
FS

Redis
DB

Apache 
Kafka

Distributed Services



Single Node Evaluation

- FnSched: Single node resource allocation  

- Linux: CPU shares 1024 

- OpenWhisk: CPU shares proportional to memory

17

Can safely co-locate



Multinode Evaluation: Scaling

- FnSched: Single node resource allocation  

- LeastConnections (LC): Choose the invoker with least outstanding requests

- RoundRobin (RR): Send successive requests to different invokers in a cyclic manner

18

Packing can scale and 
maintain performance

FnSched uses 31% fewer 
invokers compared to LC, 
and 62% compared to RR



Multi Node Evaluation: Traces

Load:
- IR

- NN

Scheduling:

- FnSched
- LeastConnections 

- RoundRobin

Traces: 

- Synthetic (top)
- WITS (bottom)

19

FnSched uses 36% fewer 
invokers compared to LC, 
and 55% compared to RR



Conclusion

- Presented a work-in-progress serverless scheduling algorithm based on 

colocation + packing

- CPU Shares algorithm: Reduces degradation compared to SoA

- Packing + Proactive Spawning: Maintains acceptable performance, 

- While reducing invoker usage by 36% compared to LC, 55% compared to RR

20



Q&A

21



Backup Slides

22



Future Work
- Proactive Spawning : Figure out ~exact number of containers required

- Evaluation: Scenarios where colocation opportunities are fewer
- Multiple ET applications

- ET:MP ratio is  > 1

- Compare against Knative

23



FnSched Approach
- Goal: Target a maximum degradation latency and minimize the number of 

servers/invokers used.

24

Challenges FnSched Approach

Application 
Diversity/ Resource 

management 

Application class based 
colocation, resource 

management

Cold-Start Proactive Spawning

Allocation & 
Placement

Packing based on data 
center power 

management policy



Sensitivity Analysis
Choose parameters for single node resource allocation algorithm. Parameters vary for 

application class

- numUpdatesThd: Minimum iterations required before updating cpu-shares 

- maxCpuShares:  Ceiling of the cpu-shares per container, maximum of 1024

- cpuSharesStep:  Per iteration increment of cpu-shares

- updateLatencyThd:  Minimum degradation before updating cpu-shares 1.10

Appln 
Class

numUpdatesThd maxCpuShares cpuSharesStep

ET 5 768 128

MP 3 256 64

25



Multi Node Placement: Latency monitoring

- Packaging: Greedy algorithm based on data center power management policy. 

- Monitor average latency

- Based on threshold latency, mark invoker to be in safe, warning, unsafe zone

- Capacity of invoker varies by the zone

I-1 I-2 I-N

26


