FnSched: An Efficient Scheduler
for Serverless Functions

Amoghavarsha Suresh, Anshul Gandhi
PACE Lab, Stony Brook University

Motivation

Serverless computing is becoming popular ’

Features:

AWS Lambda Azure Functions
- Providers responsible for resource management

- Pay-for-what-you-use (runtime)

- Easy deployment: Write your code and ship it! Google Functions

Benefits:

- Increases programmer productivity
- Seemingly infinite scalability

Motivation

- Interest from different domains

- Edge-Triggered applications: e.g. Web apps, backends, data preprocessing
- Massively Parallel applications: e.g. MapReduce, Stream Processing

- Serverless offers cost benefits: 20¢ per 1M lambda requests

- Ex-Camera [NSDI’17] serverless video encoding is 60x faster and 6x cheaper than VM
based (serverful) solution.

- Interest in serverless computing will rise. For a viable service:

- resource usage is important for the
- Reasonable performance is important for the user

Smart scheduling and resource management is critical

Outline

Motivation

Scheduling Challenges
FnSched Design
Evaluation

Conclusion & Future work

Increased Interest -> Application diversity

Scheduling challenge 1/3: Application Diversity

Edge-Triggered applications:
- Short-lived, lightweight

- e.g. Web apps, backends, data preprocessing

Massively Parallel applications:

- Long running, computationally intensive

- E.g. MapReduce, Stream Processing

EEEEEEEEEEEEE

nnnnnn

\

\/

User function F(

Results

Data

i.e., Map()

Scheduling challenge 2/3: Containers

- Serverless applications are hosted on containers o
- Absence of running container results in Cold Start AppllcaFlon
- Cold-Start: Execution
- Application execution is delayed, e.g. ~3s in our setup
- Should minimize the number of cold-starts App S.pec.ific
Initialization
Runtime
Initialization
Container
Creation

Scheduling challenge 3/3: Allocation & Placement

- Strawman: Allocate a core for each application

- However, provider cost will escalate!!

- Solution: Effective packing

Where to place a container?
Whether to colocate a container?
How long should the container be alive?

Whether to add new nodes?

FnSched Approach

Goal: Target a maximum degradation latency and minimize the number of
servers/invokers used.

FnSched Approach

N

Colocation Packing, Proactive Spawning

FnSched: Resource Management

- Popular Serverless platforms tie CPU allocation to memory requirement
- CPU requirement is dependent on the class of applications

ET
MP

- Short running ET apps are severely impacted compared to MP apps
- We need to decouple memory and CPU requirement for effective colocation

FnSched: CPU Shares Algorithm

CPU Shares: Soft limit, decides proportion of CPU during contention

ET
MP

Allocate more of CPU time to short running ET during contention!

10

FnSched: CPU Shares Algorithm

CPU Shares: Soft limit, decides proportion of CPU during contention

- When to increase the cpushares?
- How much to increase?
- How to balance the cpu shares?

11

FnSched: CPU Shares Algorithm

numUpdates+=1;

latencyRatio = latency/isoLatency;

if latencyRatio > updateLatencyThd then

if numUpdates > numUpdatesThd then

if curShares < perContainerMax then
toAddShares = cpuSharesStep * numConts;

B} i ?
i (iotSharesstnAdiShares) « maxCouShares then numUpdatesThd = When to increase the cpushares:

curShares = curShares + cpuSharesStep ; . 9 HOW mUCh to increase‘p
totShares = totShares + toAddShares)
else
o ReduceShares - - maxCpuShares > How to balance the cpu shares?

(toAddShares/numOtherConts);
rebalanceCpuShares(toReduceShares);
deltaShares = (maxCpuShares - totShares) /

numConts ;
curShares = curShares + deltaShares ;
totShares = maxCpuShares
end

end
end

end

12

Multi Node Placement: Packing

Packaging: Greedy algorithm based on data center power management policy.

-1 -2 I-N

Allocate request in the smallest index invoker

Helps to packing requests in as few invokers as possible
With effective packing, higher index invokers can be turned off

13

Multi Node Placement: Proactive Spawning

- Packaging: Greedy algorithm based on data center power management policy.

-1

-2

I-N

- Cold Starts: Scheduling on invoker k is followed by proactively spawning an

application container on invoker k+1

14

Outline

Motivation

Scheduling Challenges
FnSched Design
Evaluation

Conclusion & Future work

15

Experimental Setup

OpenWhisk Cluster: 10 VMs

Front-end + control plane: 2 VMs

Invokers: 8 VMs
Distributed services: : CephFS, Database: Redis, Stream
Processing: Apache Kafka

—

Controller

Applications:

Edge-Triggered:

N

Invoker-1 O O

Invoker-8

Image Resizing (IR), ~ mmommmmsmemeees |

Distributed Services

Streaming Analytics (SA)

Massively Parallel:
Nearest Neighbors ([N IN)

Ceph
FS

Computational Fluid Dynamic (CFD) solver

latencyThd: 1.15 i.e. maximum of 15% performance degradation

16

Single Node Evaluation

- FnSched: Single node resource allocation

- Linux: CPU shares 1024

- OpenWhisk: CPU shares proportional to memory

501 " FnSched
B Linux
W

40 mo
c
he)
© 307
©
©
o
o 20'
R TS

N - N

0 0

% degradation

501

o
e

wW
o

N
o

47.4

Can safely co-locate

CFD

301

N
o

% degradation

—_
o

Multinode Evaluation: Scaling

- FnSched: Single node resource allocation
- LeastConnections (LC): Choose the invoker with least o
- RoundRobin (RR): Send successive requests to differen:

Packing can scale and
maintain performance

201 I FnSched 8-
M .c
I RR
15.3
1 13.8 61
S 3
g FnSched uses 31% fewer :
101 - 2 4
g invokers compared to LC, g
* | | and62% comparedtoRR | =

2x 4x 8x 2x 4x 8x

Multi Node Evaluation: Traces

Load: <8 VLTI T T T T T T T 5
36 = . 32
= R J e 3
24] o Y 48
E 2 - B e i T =Yk - _2 C
Scheduling: L E“,;_
- FnSc . 0 T T T T -
. Leas] FnSched uses 36% fewer 200 400 600 800
. Time(s)
. Rroul invokers compared to LC,
and 55% comparedtoRR | __ . — s
Traces: | - -/ t—-= T — =
<
- Synthetic (top) E 6 1 r69
- WITS (bottom) 244 === H ———ept-l-— AR _ . — }a3
D 21 -2 &
o @
0 - L} L} L} - 0 Q-
0 200 400

Conclusion

Presented a work-in-progress serverless scheduling algorithm based on
colocation + packing

CPU Shares algorithm: Reduces degradation compared to SoA

Packing + Proactive Spawning: Maintains acceptable performance,

While reducing invoker usage by 36% compared to LC, 55% compared to RR

20

Q&A

Backup Slides

Future Work

Proactive Spawning : Figure out ~exact number of containers required

Evaluation: Scenarios where colocation opportunities are fewer

Multiple ET applications
ET:MP ratiois >1

Compare against Knative

23

FnSched Approach

Goal: Target a maximum degradation latency and minimize the number of

servers/invokers used.

Challenges

Cold-Start

Allocation &
Placement

FnSched Approach

Proactive Spawning

Packing based on data
center power
management policy

24

Sensitivity Analysis

Choose parameters for single node resource allocation algorithm. Parameters vary for
application class

- numUpdatesThd: Minimum iterations required before updating cpu-shares

- maxCpuShares: Ceiling of the cpu-shares per container, maximum of 1024

- cpuSharesStep: Per iteration increment of cpu-shares

- updatelatencyThd: Minimum degradation before updating cpu-shares 1.10

Appln numUpdatesThd maxCpuShares cpuSharesStep
Class
ET 5 768 128

MP 3 256 64

25

Multi Node Placement: Latency monitoring

Packaging: Greedy algorithm based on data center power management policy.

-1 -2 I-N

Monitor average latency

Based on threshold latency, mark invoker to be in safe, warning, unsafe zone
Capacity of invoker varies by the zone

26

