FAAS ORCHESTRATION OF PARALLEL WORKLOADS

Daniel Barcelona Pons, Pedro García López, Álvaro Ruiz Ollobarren, Amanda Gómez-Gómez, Gerard París, Marc Sánchez Artigas
H2020 CLOUDPATTERN: SERVERLESS DATA ANALYTICS

• Large Serverless European Research Project (4.3M)
• The main goal is to create CloudButton: a Serverless Data Analytics Platform. CloudButton will “democratize big data” by overly simplifying the overall life cycle and programming model thanks to serverless technologies
• To demonstrate the impact of the project, we target two settings with large data volumes: bioinformatics (genomics, metabolomics) and geospatial data (LiDAR, satellital)
The Serverless Supercomputer Stack

Applications: Big data, analytics, ML/AI, simulations, r/t video transcoding, ...

Video | ML | LinPack | Monte Carlo | M-R | Analytics | CRISPR

Serverless Dataflow Graphs (SDGs)

Real-time Scheduler | Low-latency serverless storage

Networking

The ExCamera stack

Cloud Vendors: Functions, APIs, Managed Service Portfolios
ServerMix Applications

<table>
<thead>
<tr>
<th>Systems</th>
<th>Components</th>
<th>Serverful</th>
<th>Serverless</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locus</td>
<td>Scheduler, Redis</td>
<td>Lambda Functions, S3</td>
<td></td>
</tr>
<tr>
<td>PyWren</td>
<td>Scheduler</td>
<td>Lambda Functions, S3</td>
<td></td>
</tr>
<tr>
<td>IBM PyWren</td>
<td>Scheduler</td>
<td>IBM Cloud Functions, COS, RabbitMQ</td>
<td></td>
</tr>
<tr>
<td>ExCamera</td>
<td>Coordinator, Rendezvous</td>
<td>Lambda Functions, S3</td>
<td></td>
</tr>
<tr>
<td>Flint</td>
<td>Scheduler</td>
<td>Lambda Functions, S3, SQS</td>
<td></td>
</tr>
<tr>
<td>NumPyWren</td>
<td>Provisioner</td>
<td>Lambda Functions, S3</td>
<td></td>
</tr>
<tr>
<td>Cirrus</td>
<td>Scheduler, Parameter Servers</td>
<td>Lambda Functions, S3</td>
<td></td>
</tr>
</tbody>
</table>
COMPARISON (WOSC4)
Is IBM Composer the answer now?
OPENWHISK AND COMPOSER
COMPOSER LIMITATIONS

- Coupled Design with OpenWhisk Conductor Actions
- Resource inefficiencies when launching parallel functions
 - High Variability in experiments
- Difficult billing of conductor and secondary actions
- Designed for short-running workflows
- Limited fault-tolerance
- It relies on a user-provided serverful Redis Service for fork-join aggregation
FISSION WORKFLOWS, AIRFLOW
AWS EXPRESS WORKFLOWS (BONUS)

- Amazing performance for 320 workers, overheads below 1 second
- Valid for short-running workflows (5 mins), function working all time
- It is relaxing fault-tolerance and checkpointing
 - At-least-once workflow execution vs Exactly-once workflow execution.
 - Message logs, not current state
- Different pricing model
 - Express Workflows: Priced by the number of executions you run, their duration, and memory consumption.
 - Standard Workflows Priced per state transition. A state transition is counted each time a step in your execution is completed.
CONCLUSIONS

- **Innovation in the Cloud providers is needed !!!**
 - Existing FaaS Orchestration systems are not currently designed for supporting parallel Big Data pipelines
 - Both IBM Composer and Amazon Express Functions have now good performance
 - But they are both designed for short-running workflows
 - **Messages to Cloud providers:**
 - Cloud providers must offer the required tools to orchestrate parallel Data Analytics tasks
 - Cloud providers must offer event-based building blocks to enable the construction of third-party schedulers
 - Multi-tenancy, cost, and resource efficiency will be of paramount importance for these services