
1

Understanding Open Source Serverless Platforms:
Design Considerations and Performance

Junfeng Li, Sameer G. Kulkarni,
K. K. Ramakrishnan, Dan Li

2

Open Source Serverless Platforms

3

Motivation and Goals
❖To develop an understanding on the open source

serverless platforms:
➢Do measurements to understand the impact of key

configuration parameters of different components
(platform, gateway, controller and function)

❖Evaluate and compare the performance of open source
serverless platforms:
➢Different workloads
➢Different auto-scaling modes

4

Dependence on Kubernetes

5

Service Exporting and Routing

6

Service Exporting and Routing

Public
NodePort
⇕

Internal
Pod_IP

Configure mapping
rules for exporting
service (Netfilter

NAT rules)

7

Service Exporting and Routing

Public
NodePort
⇕

Internal
Pod_IP

Encapsulate

Configure mapping
rules for exporting
service (Netfilter

NAT rules)

Decapsulate

8

Service Exporting and Routing

Public
NodePort
⇕

Internal
Pod_IP

Encapsulate

Configure mapping
rules for exporting
service (Netfilter

NAT rules)

Route &
Load balance

Decapsulate

9

Service Exporting and Routing

Public
NodePort
⇕

Internal
Pod_IP

Encapsulate
Execute

functions

Configure mapping
rules for exporting
service (Netfilter

NAT rules)

Get events and
push to a worker

Route &
Load balance

Decapsulate

10

❖To develop an understanding on the open source
serverless platforms:
➢Do measurements to understand the impact of key

configuration parameters of different components
(gateway, controller and function)

❖Evaluate and compare the performance of open source
serverless platforms:
➢Different workloads
➢Different auto-scaling modes

Motivation and Goals

v1.1.16 Gateway: v0.17.0
Faas-netes: v0.8.6

Faas-cli: v0.9.2

v0.8 v1.0.4

11

❖Topology: Kubernetes cluster (1 master, 2 workers) on CloudLab1

➢Hardware: Intel Xeon E5-2640 v4 @ 20 Hyperthread cores.
➢Operating System: Ubuntu 16.04.1 LTS
➢Kubernetes v1.16.1, Docker v18.09.2

❖Functions and Workload:
➢Python ‘Hello-world’ function
➢Python ‘HTTP’ function
➢Workload Generator: wrk

Experiment Setup

[1] Duplyakin, Dmitry, et al. "The design and operation of CloudLab." 2019 USENIX Annual Technical
Conference (USENIX ATC 19). 2019.

12

❖Working model

Nuclio

13

❖Working model

Nuclio

Invoke
through IG

14

❖Working model

Nuclio
Direct call to

func pod
(NodePort)

Invoke
through IG

15

❖Working model

Nuclio

Multiple
Workers

(Processes)

Direct call to
func pod

(NodePort)

Invoke
through IG

16

❖Salient parameter: the number of workers within one pod

Nuclio

17

❖Salient parameter: the number of workers within one pod

Nuclio
Performance increases as the number

of workers increases.

18

❖Working model

Knative

19

❖Working model

Knative

Multiple
Workers

(Threads)

20

❖Salient parameter: the number of workers within one pod

Knative

Fig. Throughput of Knative. Fig. Throughput of Nuclio.

21

❖Salient parameter: the number of workers within one pod

Knative
Performance improves, but relatively

lower than Nuclio.

Fig. Throughput of Knative. Fig. Throughput of Nuclio.

22

❖Working model

OpenFaaS

23

❖Working model

OpenFaaS

One Worker

24

❖Working model

OpenFaaS
Get events and
invoke function

One Worker

25

❖Working model

OpenFaaS

Multiple Modes for Of-Watchdog:
(1) Fork-per-request:
Cold start for every request;
(2) Pre-fork:
Start the function once and keep warm.

Get events and
invoke function

One Worker

26

OpenFaaS

❖Salient parameter: of-watchdog modes

27

OpenFaaS

Pre-fork
(Warm worker)

Fork-per-request

❖Salient parameter: of-watchdog modes

“Pre-fork” mode has much better
performance than “Fork-per-request”.

28

❖Working model

Kubeless

One Worker

29

❖Working model

Kubeless

One Worker

Fork-per-request

Kubeless only supports “Fork-per-request” mode.

30

Kubeless

Fig. Throughput of Kubeless. Fig. Throughput of OpenFaaS.

31

Kubeless

Fig. Throughput of Kubeless. Fig. Throughput of OpenFaaS.

Fork-per-request

The performance of Kubeless is similar to that of
OpenFaaS in “Fork-per-request” mode.

32

❖To develop an understanding on the open source
serverless platforms:
➢Describe how different components work
➢Do measurements to understand the impact of key

configuration parameters of different components
(platform, gateway, controller and function)

❖Evaluate and compare the performance of open source
serverless platforms:
➢Different workloads
➢Different auto-scaling modes

Motivation and Goals

33

Performance
Baseline: helloworld function (Return “hello”)

34

Performance
Baseline: helloworld function (Return “hello”)

Nuclio:
No ingress controller
⇒ Bypass the queue of

ingress controller
⇒ Highest throughput

35

Performance
Baseline: helloworld function (Return “hello”)

Kubeless:
Fork-per-request

⇒ Lowest throughput

Nuclio:
No ingress controller
⇒ Bypass the queue of

ingress controller
⇒ Highest throughput

36

Performance
Baseline: helloworld function (Return “hello”) Queuing Up ⇒ Long tail

Kubeless:
Fork-per-request

⇒ Lowest throughput

Nuclio:
No ingress controller
⇒ Bypass the queue of

ingress controller
⇒ Highest throughput

37

Performance
Latency breakdown of helloworld function:

38

Performance
Latency breakdown of helloworld function:

Same Python Runtime
⇒ Same execution time

39

Performance
Latency breakdown of helloworld function:

Same Python Runtime
⇒ Same execution time

Platform SpecificPlatform Specific

40

Performance
Latency breakdown of helloworld function:

Fork-Per-Request
(Cold Start All the Time)

Same Python Runtime
⇒ Same execution time

Platform SpecificPlatform Specific

41

Performance
HTTP Workload: fetch a web page (5 Byte) from a local server

42

Performance
HTTP Workload: fetch a web page (5 Byte) from a local server

Nuclio:
No ingress controller
⇒ Bypass the queue of

ingress controller
⇒ Highest throughput

43

Performance
Different modes of exporting services:

44

Performance
Different modes of exporting services:

Direct call to
func pod

(NodePort)

45

Performance
Different modes of exporting services:

Direct call to
func pod

(NodePort)
Invoke through IC/GW

46

Performance
Different modes of exporting services:

Direct call to
func pod

(NodePort)
Invoke through IC/GW

IC/GW: Overhead of Ingress
Controller/API Gateway.

47

Performance: Auto-scaling
Resource-based auto-scaling:

Resource-based auto-scaling
depends on Kubernetes HPA
(Horizontal Pod Autoscaler)

48

Performance: Auto-scaling
Resource-based auto-scaling:

Resource-based auto-scaling
depends on Kubernetes HPA
(Horizontal Pod Autoscaler)

In spite of the same function and
HPA, platform characteristics

govern auto-scaling.
(Different performance

⇒ Different resource utilization
⇒ Different auto-scaling rate)

49

Performance: Auto-scaling
Workload-based auto-scaling:

Concurrency-based RPS-based

50

Performance: Auto-scaling
Workload-based auto-scaling:

Concurrency-based RPS-based

Prometheus reacts slowly
⇒ Slow scaling

51

Performance: Auto-scaling
Issues about load balancing for OpenFaaS:

Fig. RPS-based auto-scaling
in OpenFaaS

52

Performance: Auto-scaling
Issues about load balancing for OpenFaaS:

Behavior: Auto-scaling happens
but NO performance improvement!

Fig. RPS-based auto-scaling
in OpenFaaS

No improvement

Auto-scale

53

Performance: Auto-scaling
Issues about load balancing for OpenFaaS:

Load-balancing Issue!
If client enables keep-alive,
OpenFaaS does not set up

connections with newly
created function pods, which

hinders performance
improvement.

Behavior: Auto-scaling happens
but NO performance improvement!

Fig. RPS-based auto-scaling
in OpenFaaS

No improvement

Auto-scale

54

Performance: Auto-scaling
Issues about Concurrent-based auto-scaling:

Traffic: Conc=9, RPS=400
Configuration: Conc_Threshold=10

Fig. Conc-based auto-scaling in Knative

55

Performance: Auto-scaling
Issues about Concurrent-based auto-scaling:

Traffic: Conc=9, RPS=400
Configuration: Conc_Threshold=10

Fig. Conc-based auto-scaling in Knative

No improvement

No Auto-scale

Behavior: No Auto-scaling!
No able to scale to 400 RPS (Actual

RPS=~220)

56

Performance: Auto-scaling
Issues about Concurrent-based auto-scaling:

Misconfiguration inhibits auto-
scaling.

(Conc. does not exceed threshold.
⇒ No auto-scaling with workload of

low concurrency but high RPS.)

Traffic: Conc=9, RPS=400
Configuration: Conc_Threshold=10

Fig. Conc-based auto-scaling in Knative

No improvement

No Auto-scale

Behavior: No Auto-scaling!
No able to scale to 400 RPS (Actual

RPS=~220)

57

❖Function processing:
➢Multiple workers within one function pod contribute to

performance improvement.
➢Pre-fork mode (warm worker) increases the throughput

and reduces the latency.

❖Load balancing:
➢Plays an important role in the performance and

scalability.
➢Coupling routing with load balancing can adversely

affect the performance -- Needs greater attention!

Key Observations

58

❖Autoscaling:
➢For resource-based auto-scaling, in spite of the same

function and HPA, platform characteristics govern
auto-scaling.

➢Misconfiguration of auto-scaling rules can severely
degrade the performance and system utilization.

➢Current Auto-scaling approaches are based only on
the total processed requests, while the dropped
requests are missed out. -- Incoming request rate
needs to be accounted for.

Key Observations

59

Backup Slides

60

❖Load balancing:
➢Improper load balancing results in poor performance

improvement -- Needs greater attention!
❖Autoscaling:
➢Misconfiguration of auto-scaling rules can severely

degrade the performance and system utilization.
➢Current Auto-scaling approaches are based only on the

total processed requests, while the dropped requests are
missed out. -- Incoming request rate needs to be
accounted for.

Serverless 2020 and Beyond

61

Motivation

❖To understand how the serverless platforms work?

❖What is the impact of configuration parameters?

❖What is the performance of serverless platforms?

❖What is the behavior of auto-scaling?

62

Thank you!

63

Performance
HTTP Workload: fetch a web page of different sizes

64

Performance: Auto-scaling
Workload-based auto-scaling: bursty workload

Concurrency-based RPS-based

Prometheus ⇒ React slowly

65

66https://trends.google.com/trends/explore?date=2015-01-01%202019-05-08&geo=US&q=serverless,IaaS,PaaS,FaaS66

Serverless Computing: The New Hotness

