
Evaluation of Network File System
as a Shared Data Storage in 

Serverless Computing

Jaeghang Choi* and Kyungyong Lee
Department of Computer Science
Kookmin University, South Korea

Sixth International Workshop on Serverless Computing (WoSC6) 2020 
https://www.serverlesscomputing.org/wosc6/#p5 // Dec 8, 2020



A software architecture model:
Cloud vendors operate servers and dynamically manage computing resource allocations

Role
- Developers: Just implement their workload as a function run-time.
- Cloud Vendor: Managing server considering scalability and reliability.

Serverless Computing



The core component of serverless computing

Developers just register function in cloud
- Python, Go, C, Javascript, Java

Characteristics
- Application composed multiple functions
- Triggered by event
- Pay-as-You-go
- Fully-managed

Function-as-a-Service (FaaS)



Challenges of Serverless Computing
Disadvantage of Serverless Computing

- Cold start issue causing performance variation
- No specialized hardware support

- No support Peer-to-peer(P2P) communication 
between function run-time

To overcome the limitation of P2P communication
- easy way is using storage



Major Contributions

Qualitative comparison of various cloud storage services
as intermediate FaaS storage

Quantitative evaluation of NFS as a FaaS ephemeral storage service



Types of Storages for Serverless Computing
Object storage

- Cheap & slow 
disk-based object storage services (AWS S3).

- Expensive & fast 
RAM-based caching services (AWS Redis).

- Demerit: only entire file should be uploaded or 
downloaded. 

Block storage 
- AWS EFS, EBS
- No support for P2P communication 

in serverless computing
- Merit: byte-level file access (data-intensive applications)

Storage 
Type Speed Price

Object 
(S3) Slow $

Caching 
(Redis) Fast $$$



Using EFS for AWS Lambda
Amazon Elastic File System: Network file system(NFS) supported by AWS



Amazon Elastic File System(EFS)
Characteristics of EFS

- Fully-managed
- POSIX file system APIs 

(similar local storage disk)

- Two throughput modes
- Bursting

: scales with consumed storage size
- Provisioned

: purchase additional throughput



Characteristics of NFS as a cloud storage
Network File System(NFS)

- Faster than Object Storage
- Cheaper than Object Caching Storage
- Dataset stored permanently
- Access files in byte-level

Storage Type Speed Price Access Persistence

Object (S3) Slow $ Object Permanent

Caching (Redis) Fast $$$ Object Permanent

Local disk Fast 0 Block Temporary

NFS (EFS) Fast $$ Block Permanent



Experiment with EFS
Goal: Understand performance characteristics of NFS as a FaaS storage service

Environment
Function

- AWS Lambda: Python 3.6, boto3
Storage

- Lambda Layer(maximally available size: 250MB)
- AWS S3
- Amazon EFS: provisioned mode - throughput: 100MB/S

Dataset
- Target File: dummy data - size: 200MB



Impact of Block Sizes for EFS
Block sizes under evaluation: 50KB, 256KB, 1MB, 2MB
Single function run-time does not fully utilize available bandwidth (100MB/S)

- dd (37.6 MB/S), random read (62MB/S), random write (25.4 MB/S), 
sequential read (84.9 MB/S), Sequential write (21.1 MB/S)



Comparing NFS with a Local Storage
Performance impact from different Lambda memory (512MB → 2GB)

- Local storage : 2~3 times more throughput achieved
- EFS: no difference

Lambda RAM 512MB Lambda RAM 2G



Evaluation of scalability of EFS

Total Bandwidth(100MB/S) = Number of Concurrent * Each Function Bandwidth 

Multiple function request simultaneously
- Representation of workload: random read
- Lambda: 512MB, Block Size: 2MB

- Inverse proportion increasing requests and function 
bandwidth

- The latency increases linearly with respect to the 
concurrent access



Comparing NFS with an Object Storage
Performed Image augmentation tasks in python pillow library

5 types of Image Augmentation
- flip left-right 
- flip top-bottom
- grayscale
- rotate 90 degrees
- rotate 180 degrees

Number of Upload tasks = Number of Download tasks * 5



Comparing NFS with an Object Storage
Comparing image upload and download latency of EFS and S3 with a different number of 
parallel executions

- EFS show severe degradation as parallel requests increase

10 input images 50 input images 100 input images

Number Of Images EFS S3

10 0.13 0.31

50 0.29 0.14

100 0.41 0.22

The Coefficient of variation(CoV)
- the ratio of the standard deviation to the average.

Cov of upload task



Quantitative comparison of various cloud storage services for ephemeral storage for FaaS

Qualitative evaluation of EFS under various scenarios
- Limited single function bandwidths comparing to a local storage
- Bandwidths sharing among parallel function invocations
- Noticeable performance degradation when multiple function run-times access

Future work
- Discover new application scenarios using EFS with Lambda, such as MapReduce
- Understanding consistency performance of EFS with Lambda

Conclusion and future work



Q&A
contact: chl8273@kookmin.ac.kr


