
Why Serverless can work 
for enterprises?



Slide / 2

I’m..

§ Principal Architect @T-Mobile
§ Part of Cloud Center of Excellence
§ Serverless Advocate
§ Focus: Cloud Technologies, Application Design 

& Architecture, Developer Experience & Tooling

Satish Malireddi



Slide / 3

Agenda

§ T-Mobile’s Serverless Journey
§ Challenges
§ Business Case
§ Toolset & Serverless Adoption
§ Use Cases
§ Adoption Plan (that worked for us!)



Slide / 4

Serverless Journey…

2017

• Proof of concepts
• Microsites
• Policy & Compliance Manager
• Jazz – Open source

2018

• Thousands of Functions
• Millions of Invocations per day
• Jazz - Production Ready!

2019

2020

• 3X growth in serverless workloads
• Tier-1 Applications
• Spike in $, #requests & #resources

• Platform Strategy - Serverless First
• Billions of events per month
• Multiple apps in production
• Jazz Adoption



Slide / 5

Our serverless adoption journey was not easy.

Challenges

Because many developers think serverless…

§ is new & immature
§ has limitations
§ requires a lot of architectural changes
§ ecosystem is always changing
§ might actually become expensive



Slide / 6

Business Case

Why should we really use serverless?



Slide / 7

Business Case

Cost Security Agility



Slide / 8

Business Case

§ Reduce costs for 
suitable workloads

§ Visibility into incurred 
costs

§ 100% Automation
§ Ease of Use
§ Improved Developer 

Experience
§ Training

§ Secure from day 1
§ Complete visibility into 

what’s being built
§ Implement guardrails 

through the platform

Cost Control Security, 
Governance & Compliance

Reduce dependencies 
that hamper agility



Slide / 9

What Developers want?

§ Agility
§ Faster Time to Market

§ Ease of Use

What Management wants?

§ Governance
§ Visibility 

§ Compliance 

§ Standardization
§ Guardrails
§ Process Control

Business Case



Slide / 10

We built Jazz, 
a Serverless Development Platform

that enables developers to build 
secure, compliant serverless apps

that are operationally ready from day one!

Toolset

https://github.com/tmobile/jazz

Jazz



Slide / 11

§ Accelerate Serverless Adoption

§ Built around two themes –
§ Ease of use

§ Build compliant applications in the cloud

§ Enterprise processes are 100% automated
§ Self-Service enabled to reduce dependencies
§ Bridge gaps between actual serverless promise and the reality
§ Keep developers & management happy

Breaking it down



Slide / 12

§ CI/CD
§ Standards & Security Controls baked in
§ Multi Tenancy
§ 1-Click Environments
§ Best practices through code templates (application marketplace)
§ Governance & Compliance
§ Log collection, aggregation & analytics
§ Monitoring – Metrics, Dashboards & Alerts
§ Enterprise Integrations through extensions
§ Abstract Complexity with Cloud Provider solutions

Features



Slide / 13

§ Improved time to market

§ Faster access to the cloud

§ Lower environment creation is as easy a simple ”git commit”

§ Best practices are being shared
§ Developers are talking to each other

How did Jazz help with adoption



Slide / 14

§ Single purpose APIs

§ Static Websites

§ Event driven applications/functions

§ Scheduled functions
§ Data transfer/manipulation/processing jobs

Top 5 Usecases



Slide / 15

Usecases



Slide / 16

Usecases



Slide / 17

Usecases



Slide / 18

Usecases



Slide / 19

§ Difficult to change developer mindset

§ Looking for Lift-n-Shift

§ Constrained by lot of factors when making modern design choices

§ Developers are not aware of Op-Ex savings
§ Lack of training, not being up-to-date with technology

§ Technical limitations with cloud offerings (might go away with time)

Challenges still remain..



Slide / 20

§ Identify use cases that are best suited and go after them
§ Don't over engineer! Serverless might not be the perfect fit for all your applications
§ Provide visibility into cost savings/estimates during the development phase
§ Training (most of the time its about people not being aware) & make it a continuous 

exercise
§ Have CoE teams: Dedicated folks who can experiment, learn, train others, identify 

tools to empower developers
§ Create framework for developers so that they can experiment easily within 

controlled guard rails
§ If you are developing abstractions, listen to your developers to solve their pain 

points and improve developer experience

Plan that worked for us




