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Introduction
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Serverless Computing

● Runtime operation and management done by the provider
○ Reduces the overhead for the software owner

○ Provisioning

○ Scaling resources

● Software is developed by writing functions
○ Well-defined interface

○ Functions deployed separately
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Serverless Computing

Image source: https://aws.amazon.com/lambda/
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The Need for a Performance Model

● No previous work has been done for performance modelling of Serverless Computing 

platforms

● Accurate performance modelling can beneficial in many ways:
○ Ensure the Quality of Service (QoS)

○ Improve performance metrics

○ Predict/optimize infrastructure cost

○ Move from best-effort to performance guarantees

● It can benefit both serverless provider and application developer
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System Description
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Function States, Cold Starts, and Warm Starts

● Function States:
○ Initializing: Performing initialization tasks to prepare the function for incoming requests. Includes 

infrastructure initialization and application initialization.
○ Running: Running the tasks required to process a request.
○ Idle: Provisioned instance that is not running any workloads. The instances in this state are not billed.

● Cold Start Requests:
○ A request that needs to go through initialization steps due to lack of provisioned capacity.

● Warm Start Requests:
○ Only includes request processing time since idle instance was available
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Autoscaling

Expiration Threshold

Scaling Out:

Scaling In:
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Other Important Characteristics

● Initialization Time: The amount of time instance spends in the initializing state.

● Response Time: No queuing, so it is equal to service time. It remains stable 

throughout time for cold and warm start requests.

● Maximum Concurrency Level: Maximum number of instances that can be in the state 

running in parallel.

● Request Routing: To facilitate scaling in, requests are routed to recently created 

instances first.
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Analytical Modelling
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Overview

Warm Pool Model:
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● Cold Start Rate
○ The system behaves like an Erlang Loss System (M/G/m/m).

○ The blocked requests are either rejected (reached maximum concurrency level) or cause a 

cold start (and thus the creation of a new instance)

● Arrival Rate for Each Instance
○ Requests blocked by instance n are either processed by instance n+1 or blocked by it.

○ The difference between blocked rates gives us individual arrival rates.

● Server Expiration Rate
○ Can be calculated knowing individual arrival rates and expiration threshold.

● Warm Pool Model
○ Each state represents the number of instances in the warm pool.
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● For each state, we can also calculate:
○ Probability of Rejection: Probability of being blocked when reaching 

maximum concurrency.
○ Probability of Cold Start: Probability of being blocked in other states.
○ Average Response Time: 
○ Mean Number of Instances in Warm Pool:

■ Running
■ Idle

○ Utilization: Ratio of instances in running state over all instances.
● All predictions can be found in a time-bounded fashion (e.g., answers the 

question “what happens to my QoS in the next 5 minutes?”)
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Experimental Validation
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Experimental Setup

● Experiments done on AWS Lambda
○ Python 3.6 runtime with 128MB of RAM on us-east-1 region

○ A mixture of CPU and IO intensive tasks

● Client was a virtual machine on Compute Canada Arbutus
○ 8 vCPUs, 16GB of RAM, 1000Mbps connectivity, single-digit milliseconds latency to AWS 

servers

○ Python with in-house workload generation tool pacswg
○ Official boto3 library for API communication

○ Communicated directly with Lambda API, no intermediary interfaces like API Gateway

● Predictions are made 5 minutes into the future

● Assumed oracle request pattern prediction
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Sample Workload
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Experimental Results
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Experimental Results (2)
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Conclusion
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Conclusion

● Accurate and tractable analytical performance model

● Ability to predict important performance/cost related metrics

● Can predict QoS

● Can benefit serverless providers
○ Ability to predict QoS under different loads on deployment time

○ Can be used in the management to prevent performance degradation

● Could be useful to application developers
○ Predict how their system will perform in the immediate future

○ Help them optimize their memory configuration to occur minimal cost that satisfies 

performance requirements throughout their daily request patterns

● Can be used in the management systems to warm-up instances to prevent SLA violations
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Summary
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