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Model Serving Hosted on Cloud
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Model Serving Hosted on Cloud
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Model Serving Requirements
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Model Serving Requirements

Provisioning Latency
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Model Serving Requirements
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Model Selection
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Model Selection
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Challenges with Serverless
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Challenges with Serverless
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What we need?

eHow to make the users oblivious of model
selection from the extensive pool of models?
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What we need?

eHow to make the users oblivious of model
selection from the extensive pool of models?

eHow to right-size VMs and appropriately configure
the serverless functions?
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What we need?

eHow to make the users oblivious of model
selection from the extensive pool of models?

eHow to right-size VMs and appropriately configure
the serverless functions?

e\What is the right degree to combine serverless
functions along with VMs for dynamic load?
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Proposed Solutions
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Proposed Solutions

Feedback-driven learning based
model selection.

Load-Based Procurement Policies

Provisioning latency and SLO
aware resource selection

Dynamic serverless configurations.
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Proposed Solutions
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Implementation and Evaluation

* Mxnet Framework. Il
» AWS resources. Am

* Pretrained ML models
on Imagenet dataset.
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Implementation and Evaluation

» Mxnet Framework. 1 :ﬁﬁiﬁ%”
" E‘ :%.‘ %ﬁ.ﬁ 3
 AWS resources.

IMAGE
* Pretrained ML models
on Imagenet dataset.

Query Memory Re- | Memory Al- | Average Ex- | Requests per
Type quired (GB) located (GB) | ecution (ms) | vCPU for VMs

Caffenet 1.024 3.072 300 4
Googlenet 0.456 2.048 450 3
Squeezenet 0.154 2.048 130 6
Resnet-18 0.304 3.072 320 3
Resnet-200 1.024 3.072 956 1
Resnext-50 0.645 3.072 560 2
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INnitial Results
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60% less SLO Violations.
10% reduction in deployment costs
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