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How to optimize both model selection and 
resource selection?



Model Serving Requirements

Response 
Latency

Accuracy

Model  
Serving Model Latency

Provisioning Latency         

Cost

4



Model Serving Requirements

Response 
Latency

Accuracy

Model  
Serving Model Latency

Provisioning Latency         

Cost

4



Model Serving Requirements

Image ClassificaEon using pretrained keras models

La
te

nc
y(

m
s)

0

100

200

300

400

Ac
cu

ra
cy

(%
)

70.00

75.00

80.00

85.00

90.00

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11

Top1-Accuracy Latency

Response 
Latency

Accuracy

Model  
Serving Model Latency

Provisioning Latency         

Cost

4



Model Serving Requirements

Image ClassificaEon using pretrained keras models

La
te

nc
y(

m
s)

0

100

200

300

400

Ac
cu

ra
cy

(%
)

70.00

75.00

80.00

85.00

90.00

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11

Top1-Accuracy Latency

Response 
Latency

Accuracy

Model  
Serving Model Latency

Provisioning Latency         

Cost

4

Model Serving Challenges?
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What about resource selection?
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•How to make the users oblivious of model 
selection from the extensive pool of models?

•How to right-size VMs and appropriately configure 
the serverless functions?

•What is the right degree to combine serverless 
functions along with VMs for dynamic load? 

What we need?
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• Mxnet Framework. 
• AWS resources. 
• Pretrained ML models                           

on imagenet dataset.
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Initial Results

60% less SLO Violations.
10% reduction in deployment costs 
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