
12/8/2020ACE: Just-in-time Serverless Software Component Discovery Through Approximate Concrete Execution 1

ACE: Just-in-time Serverless Software Component 
Discovery Through Approximate Concrete Execution

1Boston University; 2IBM T.J. Watson Research Center

Sixth International Workshop on Serverless Computing (WoSC6)
December 8, 2020
www.serverlesscomputing.org/wosc6/#p7

BY ANTHONY BYRNE1, SHRIPAD NADGOWDA2, AND AYSE K. COSKUN1

https://www.serverlesscomputing.org/wosc6/


12/8/2020ACE: Just-in-time Serverless Software Component Discovery Through Approximate Concrete Execution 2

Serverless Containers: More Than Just FaaS

¡ “Serverless computing” encompasses more than Lambda functions
¡ FaaS requirements (language, runtime, etc.) too strict for many developers

¡ Cloud providers offer serverless container platforms as a compromise
¡ “Just hand us your Docker image, and we’ll handle everything else”

¡ Bestow serverless benefits on any containerized app: scaling, billing, etc.

¡ Allows executables not typically found in FaaS: compiled C/C++/Go binaries



12/8/2020ACE: Just-in-time Serverless Software Component Discovery Through Approximate Concrete Execution 3

What Could Possibly Go Wrong?

¡ Cloud apps often made of in-house and off-the-shelf parts
¡ Libraries, microservices, helper tools, etc.

¡ “Undesirable” software components key to many scandals
¡ OpenSSL: Heartbleed bug exposed 66% of web servers (2014)

¡ Apache Struts: 143 million Equifax records breached (2017)

¡ Several court cases regarding licensing (e.g., AGPL)

¡ Binaries harder to screen for undesirables than Python/Java/JS code
¡ No “requirements.txt” or other component manifest, just 1’s and 0’s

How can we discover software components in serverless binaries?



12/8/2020ACE: Just-in-time Serverless Software Component Discovery Through Approximate Concrete Execution 4

Just-in-time Component Discovery for Serverless

¡ Serverless gives cloud providers unprecedented access 

to developers’ applications

¡ Use it for good by scanning apps “JIT” before harm occurs

¡ Serverless binaries present special challenges

¡ Metadata stripped and obscured through static linkage

¡ Most analysis techniques slow and error-prone

¡ Binary function fingerprinting provides a framework

¡ Disassemble binaries, fingerprint functions, check blocklist

¡ If fingerprint similar to “known bad” one, then flag for review 

Function 

Finger-

printer

How can we fingerprint a binary function?

JIT Component Discovery



12/8/2020ACE: Just-in-time Serverless Software Component Discovery Through Approximate Concrete Execution 5

Step 1
Disassemble raw 

binary and determine 
function bounds

• Prior work* provides 

function bounds in 

stripped binaries

Step 2
Translate assembly 
code to IR function-

by-function

• REIL: simple MIPS-

like register layout, 

infinite memory

Step 3
Filter code and 

provision a REIL 
“approximate VM”

• Remove all control 

flow instructions 

and sort (to account 

for compiler diffs.) 

Step 4
Approximately 

execute and collect 
final aVM context

• Post-execution reg. 

values become 

fingerprint

push r1
mov r2, 5
jnz 0x56

sub r0, 8, r0
stm r1, r0
str 5, r2
bisnz r4, r3
jcc r4, 56

REGISTERS
r0 = 10
r1 = 10
r2 = 10
r3 = 10
r4 = 10

RAM
0x0 = 0
0x1 = 1
0x2 = 2
0x3 = 3
0x4 = 4

REGISTERS
r0 = 2
r1 = 10
r2 = 5
r3 = 10
r4 = 1

RAM
0x0 = 0
0x1 = 1
0x2 = 10
0x3 = 3
0x4 = 4jcc r4, 56

Introducing Approximate Concrete Execution

* D. Andriesse, A. Slowinska, and H. Bos, “Compiler-Agnostic Function Detection in Binaries,” in 2017 IEEE European Symposium on Security and Privacy (EuroS&P), 2017, pp. 177–189.



12/8/2020ACE: Just-in-time Serverless Software Component Discovery Through Approximate Concrete Execution 6

Evaluating ACE for Serverless: Goals

¡ A JIT serverless binary fingerprinting method must…
¡ produce representative fingerprints resistant to compiler variations

¡ introduce very little overhead to the serverless environment

¡ be tunable to different users’ needs and applications



12/8/2020ACE: Just-in-time Serverless Software Component Discovery Through Approximate Concrete Execution 7

Evaluation

Accuracy: find the undesirable function
¡ Inject dummy function into ~230 C/C++ cloud apps

¡ Compile clean & injected apps and disassemble

¡ Classify each of the 37k functions using ACE

¡ Positive: exact match to known dummy fingerprint

Overhead
¡ 5.2x faster end-to-end than baseline

¡ Most functions fingerprinted in <10 milliseconds

¡ ACE requires no pre-training 

¡ Learning-based methods like SAFE require training and constant 
updating of ML models

¡ Minimal overall impact on cold-start or deployment latency

0.85

0.90

0.95

1.00

Precision Recall F1

Experiment 1: Classification Accuracy

ACE Baseline (SAFE)

3.0
5.91.1

15.7

0

5

10

15

20

ACE Baseline (SAFE)

R
un

tim
e 

(m
in

ut
es

)

Experiment 2: Overhead Comparison

SW Component
Discovery

Function
Fingerprinting



12/8/2020ACE: Just-in-time Serverless Software Component Discovery Through Approximate Concrete Execution 8

Speed
• No model training

• No complex instruction 

emulation

• 5.2x faster end-to-end

Resiliency
• Code filtering mitigates 

compiler variations

• 99% accurate binary 

classification of 

undesirable code

Versatility
• Several variables 

(sensitivity, aVM register 

size, etc.) tunable to users’ 

needs 

• Output vector suited to 

almost any search 

technique

Why ACE for Serverless Component Discovery?



12/8/2020ACE: Just-in-time Serverless Software Component Discovery Through Approximate Concrete Execution 9

Concluding Remarks

¡ Serverless container platforms 
vulnerable to problems with 
undesirable software components

¡ ACE enables just-in-time discovery 
of these components through binary 
function fingerprinting

¡ We’re excited to see future work 
apply the aVM to further improve 
serverless performance & security

More info at bu.edu/peaclab

Please send feedback to abyrne19@bu.edu

This work has been partially funded by IBM Research


