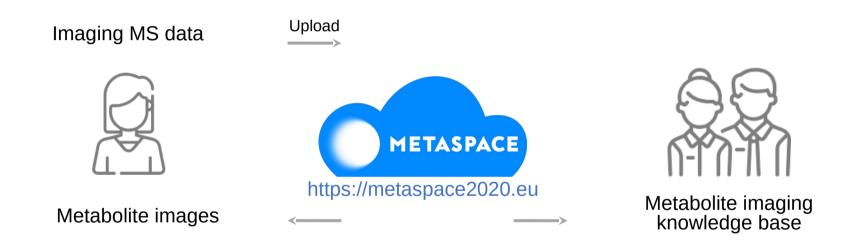
Scaling up spatial metabolomics with serverless computing and Lit hops

Lachlan Stuart¹, Sergii Mamedov¹, Omer Belhasin², Vitaly Kovalev¹, Josep Sampe³, Gil Vernik², <u>Theodore Alexandrov¹</u>


¹EMBL, ²IBM Research, ³University of Rovira & Virgili

Spatial metabolomics

- Technology for detecting small molecules, metabolites, lipids in tissues
- Used in biology, medicine, pharma
- Dataset = multi-channel image, every channel is associated with a molecule
- 1-1000 GB / dataset

METASPACE: engine for spatial metabolomics

15.000+ submissions / 800+ users / 80+ labs / 70+ publications

METASPACE-Lithops

METASPACE \longleftrightarrow LIGHTWEIGHT OPTIMIZED PROCESSING

IBM Cloud Code Engine

- Scalable solution for science
- Less infrastructure overhead
- No need for resource planning

- Orchestrates the partitioning and processing of data
- Hides the runtime platform

https://github.com/lithops-cloud

- Native support for serverless
- On demand scaling
- Less memory/CPU constraints

Evaluation of using serverless (Lithops) vs Apache Spark

- Performance: 2-1.2 times faster for small-medium datasets
- Convenience in managing resources
 - setting the number of parallel executors
 - setting the amount of allocated RAM
- Close-to-linear decrease of runtime with increase of number of executors (for 40-160 executors)
- Same lightweight docker images for dev & production in cloud (CF, CE, VPC)
- Cloud-agnostic

Acknowledgements

Alexandrov team

Lucas Maciel Vieira

Shahraz Mohammed

Mans Ekelof

Submitters of public data

800+ scientists worldwide

Collaborators in EU CloudButton project

Pedro Antonio Garcia Lopez, URV

EU Horizon2020 funding:

