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Tradeoffs and Consequences
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Serverless at Google : 15 years and counting
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Specialized runtimes → Container-based execution
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An earlier version of this evolution… going in the opposite direction.

Let’s go back to the 1990’s…

● CGI: fork/exec, env vars / stdin / stdout
● Apache: pre-forked free pool of child processes
● mod_perl: preload Perl interpreter and selected packages into pre-forked child processes
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CGI scripts introduced the cold start problem
● Every request is a cold start (execution of an arbitrary program)
● This becomes a problem with interpreted languages, which take longer to start

Two recipes materialized to address this:
● Embed the language runtime in the HTTP server (NSAPI, Servlet API, …)
● Split the language runtime into its own long-lived process (FastCGI)

Both involve specialization of the execution environment
● The web server becomes part of an “opinionated platform”
● This specialization enables agility (faster startup, lower CPU and memory usage).
● This is the backdrop against which App Engine was created.
● “A scalable container” - Guido van Rossum (App Engine emeritus)
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<VirtualHost *:80>
  ServerName one
  DocumentRoot /var/www/one
  <Directory /var/www/one>
    Options ExecCGI
    …
  </Directory>
</VirtualHost>

<VirtualHost *:80>
  ServerName two
  DocumentRoot /var/www/two
  <Directory /var/www/two>
    Options ExecCGI
    …
  </Directory>
</VirtualHost>

Tenants
Isolation

Let’s go back to the ‘90’s one more time…

● VirtualHost provided a form of 
multi-tenancy for web hosting.

● DocumentRoot provided a form of 
isolation between tenants

From this starting point, to build a platform, 
one must add:

● Security: provide effective sandboxing 
around mutually untrusting workloads.

● Scale: support large # of tenants, large 
individual tenant size, rapid changes in 
tenant resource usage.
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Security for Serverless workloads
● Many sandboxing options out there. Some are specific to particular workloads, some are not.
● Some tradeoff between the level of isolation, and the overhead* of the sandbox.

Dedicated machines
● Putting the “server” in “Serverless”?
● Typically slowest to provision
● Best isolation

IaaS VMs
● Provision in O(1 minute)
● Very good isolation
● Also relevant: core scheduling

Virtualized sandboxes
● gVisor, crosvm…
● Optimized for high density, fast startup (100 ms to 1 second setup time)
● Good security isolation, fair performance isolation

* overhead means a lot of things: memory overhead, CPU overhead, and/or provisioning overhead

OS level isolation (namespaces, seccomp, jail)
● Even higher density
● 10-100 ms setup time
● Variable security and performance isolation

Runtime level isolation
● v8::Isolate (very fast setup time: less than 10 ms)
● java.lang.SecurityManager (nontrivial CPU cost)
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Scaling Serverless Platforms
● Scaling to a large number of tenants (more specifically: high tenant density)

○ Inevitable consequence of “Serverless” billing models (pay for what you use)
● Supporting large individual tenants (for example, rapid redeployment)

○ Rapid application delivery (image pulling / mounting)
○ Traffic migration (perhaps uncomfortably fast)

● Handling rapid bursts of load
○ Some predictable, some not
○ Balance queueing with overshoot
○ Instance concurrency limits make this harder

Tenant density and agility are more challenging as the platform becomes more generic

Concrete example: FaaS vs. CaaS

● FaaS optimizations: shared base layers, pre-spun instances ⇒ low node affinity, high agility
● CaaS challenge: the 10+ GB container image ⇒ high node affinity, low agility

8



Proprietary + Confidential

Operating Serverless Platforms
Debugging applications

● Debugging can be challenging: common tools (ssh, gdb, …) may not be available.
● Less ability for customer to diagnose issues ⇒ higher support load.
● Billing model affects this (e.g. issues caused by throttle-while-idle).
● Tendency to overwhelm dependencies ⇒ scaling-driven feedback loops.

Updating applications (security patches, etc)

● Highly opinionated platforms ⇒ security patches are easier to auto-apply.
● Can we replace base layers?  Sometimes (need library compatibility).
● Can we rebuild the container?  Sometimes (need source code).
● Did the update work?  Not always clear… “it compiles” may not suffice.
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Grading Serverless

Security
● Many sandboxes and 

tenancy models.
● Less dependent on 

specialization.
● Good progress in the 

past five years.

Grade: B

Scaling
● Reasonably good with 

specialized platforms.
● Fair to poor with more 

generic platforms.
● Recent progress 

improving image pulls.

Grade: C

Operating
● Debugging leaves a lot 

to be desired.
● Not much of a story 

around auto-updates.
● Need investment here 

to drive adoption.

Grade: D
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Future Developments

Service Mesh
● Should enable better tracing (e.g. to 

identify overloaded dependencies).
● Would like to see Redis, MySQL and 

others participating in the mesh.
● Should also enable customers to mix and 

match execution environments.
● Example: develop on IaaS platform, 

deploy to a K8S cluster, migrate to S8S.

Software Supply Chain
● Need application source code and 

dependencies, to enable auto-updates.
● Container builds need to be hermetic and 

reproducible.
● Expect considerable effort invested in this 

area going forward.
● Expect that effort to drive Serverless 

adoption in the years to come.
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                                                            Questions
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