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Microarcitectural state

» State of In-core performance enhancing
structures

- Branch Target Buffer (BTB)
- lcache

* Crucial for processor performance
* Need temporal locality to work effectively



Serverless function characteristics

e Short running (often < 1s, many < 100 ms)
ATC’20, 1]
* Possibly infrequent invocations

— Providers need to interleave the execution of
different functions on the same processor core

* This reduces temporal locality

[1] Datalog. 2021. The state of serverless. https://www.datadoghqg.com/state-of-serverless-2021/. (2021).



Problem: Interleaved execution thrashes (i.e.
overwrites) microarchitectural state [ISCA'22]

Invocation sequence example: AAABBABAB A and B: Two functions

executing on the same
/ \ processor core

Cold invocation Warm invocation



Consequence: Performance of serverless
functions Is adversely affected by microarchitectural
state thrashing [ISCA'22]



Question 1: Which properties of serverless
functions make them vulnerable to performance
degradation from microarchitectural state
thrashing?

Question 2: What Is the performance
Improvement opportunity of serverless-targeted
microarchitectural optimizations?



Experimental setup

* Representative and synthetic functions
(NodeJS and Python)

e Two modes: Interleaved and back-to-back

- Interleaved execution simulated by a executing a
microarchitectural state thrashing function after
each function invocation



Where Is time spent?
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Short-running functions are generally

more affected by interleaved Functions with similar execution time
executions than long-running functions are affected differently by state
thrashing



Top-Down bottleneck analysis

Short running

Short running NodeJS functions | | |
functions (< 1 ms):  are heavily front-end Longer-running functions (> 10 ms):
Lower performance  bound Better performance and no

vulnerability to interleaving

and more vulnerable
to interleaving

Backend_ Bound
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Frontend Bound
Retiring
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Hypothesis

* Sensitivity to state thrashing depends on
— Function execution time
- Function implementation language

* Heavily front-end bound

— Prior work suggests this is observed in functions
with a large code footprint [ASPLOS’18, HPCA'17]



MPKI

Code footprint
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Conclusions

* Microarchitectural structures warm up quickly

* Only certain functions benefit from warm
microarchitectural states

- Functions with short runtimes (< 1ms) and
— Functions with large code footprints

* Such functions are quite uncommon



Questions?
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