

Impact of Microarchitectural State
Reuse on Serverless Functions

Truls Asheim, Tanvir Ahmed Khan, Baris Kasicki
and Rakesh Kumar

Microarcitectural state
● State of in-core performance enhancing

structures
– Branch Target Buffer (BTB)
– Icache

● Crucial for processor performance
● Need temporal locality to work effectively

Serverless function characteristics
● Short running (often < 1s, many < 100 ms)

[ATC’20, 1]
● Possibly infrequent invocations

– Providers need to interleave the execution of
different functions on the same processor core

● This reduces temporal locality

[1] Datalog. 2021. The state of serverless. https://www.datadoghq.com/state-of-serverless-2021/. (2021).

Problem: Interleaved execution thrashes (i.e.
overwrites) microarchitectural state [ISCA’22]

Invocation sequence example: AAABBABAB

Cold invocation Warm invocation

A and B: Two functions
executing on the same
processor core

Consequence: Performance of serverless
functions is adversely affected by microarchitectural

state thrashing [ISCA’22]

Question 1: Which properties of serverless
functions make them vulnerable to performance

degradation from microarchitectural state
thrashing?

Question 2: What is the performance
improvement opportunity of serverless-targeted

microarchitectural optimizations?

Experimental setup
● Representative and synthetic functions

(NodeJS and Python)
● Two modes: Interleaved and back-to-back

– Interleaved execution simulated by a executing a
microarchitectural state thrashing function after
each function invocation

Where is time spent?

Functions with similar execution time
are affected differently by state
thrashing

Short-running functions are generally
more affected by interleaved
executions than long-running functions

Top-Down bottleneck analysis
Short running
functions (< 1 ms):
Lower performance
and more vulnerable
to interleaving

Short running
NodeJS functions
are heavily front-end
bound

Longer-running functions (> 10 ms):
Better performance and no
vulnerability to interleaving

Hypothesis
● Sensitivity to state thrashing depends on

– Function execution time
– Function implementation language

● Heavily front-end bound
– Prior work suggests this is observed in functions

with a large code footprint [ASPLOS’18, HPCA’17]

Code footprint

NodeJS: Bigger code
footprint

Python: Smaller code
footprint

Confirms hypothesis
about the impact of
function code footprint

Conclusions
● Microarchitectural structures warm up quickly
● Only certain functions benefit from warm

microarchitectural states
– Functions with short runtimes (< 1ms) and
– Functions with large code footprints

● Such functions are quite uncommon

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

