Impact of Microarchitectural State
Reuse on Serverless Functions

Truls Asheim, Tanvir Ahmed Khan, Baris Kasicki
and Rakesh Kumar

® NTNU MICHIGAN

Microarcitectural state

» State of In-core performance enhancing
structures

- Branch Target Buffer (BTB)
- lcache

* Crucial for processor performance
* Need temporal locality to work effectively

Serverless function characteristics

e Short running (often < 1s, many < 100 ms)
ATC’20, 1]
* Possibly infrequent invocations

— Providers need to interleave the execution of
different functions on the same processor core

* This reduces temporal locality

[1] Datalog. 2021. The state of serverless. https://www.datadoghqg.com/state-of-serverless-2021/. (2021).

Problem: Interleaved execution thrashes (i.e.
overwrites) microarchitectural state [ISCA'22]

Invocation sequence example: AAABBABAB A and B: Two functions

executing on the same
/ \ processor core

Cold invocation Warm invocation

Consequence: Performance of serverless
functions Is adversely affected by microarchitectural
state thrashing [ISCA'22]

Question 1: Which properties of serverless
functions make them vulnerable to performance
degradation from microarchitectural state
thrashing?

Question 2: What Is the performance
Improvement opportunity of serverless-targeted
microarchitectural optimizations?

Experimental setup

* Representative and synthetic functions
(NodeJS and Python)

e Two modes: Interleaved and back-to-back

- Interleaved execution simulated by a executing a
microarchitectural state thrashing function after
each function invocation

Where Is time spent?

100 -
. [Application code
T 75 I gRPC
= B HTTP
8 s0- B Kemel
s M Library
3 25- B Linker
[0 Other
. I stdiib
1 1 1] 1 L] 1 1 1] 1]] 1] 1 1 1 1
X] X0 e X @ XQ @ X0 @ X @ AN 2 AN 2 X (] X
; @\ > ,(\0(\ 5 {b’e 00 ‘\\’&6 (\O(\ "09 (\0(\ ‘(\{39 (\0\\ ‘(\{06 (\00 ‘(\\@% (\0 @9 (\0(\ \’0’6 (\0(\ K’b'g
o i P & &F ¢ N QQ’\’ QQQ QQ:\ QQQ QU\ QQQ N
'(QQ @Q 60 d> \> ({0\'\\ \‘\% 9)\ \Q \Q QQ \QQ QQQ N D
e s
,\000 oc’o S N \?_0 \{0> '*059/-0 & >,o/ >%/ ‘6‘/\ “03‘\ 3
> «7 6‘00 P R0’ @ ¥R e
NI
Benchmart

Short-running functions are generally

more affected by interleaved Functions with similar execution time
executions than long-running functions are affected differently by state
thrashing

Top-Down bottleneck analysis

Short running

Short running NodeJS functions | | |
functions (< 1 ms): are heavily front-end Longer-running functions (> 10 ms):
Lower performance bound Better performance and no

vulnerability to interleaving

and more vulnerable
to interleaving

Backend_ Bound
Bad_Speculation
Frontend Bound
Retiring

Ranrhmark

Hypothesis

* Sensitivity to state thrashing depends on
— Function execution time
- Function implementation language

* Heavily front-end bound

— Prior work suggests this is observed in functions
with a large code footprint [ASPLOS’18, HPCA'17]

MPKI

Code footprint

autocomplete deltablue dynamichtmi img_resize
154 10.0 -
3 < 5.0 wwnNEnmm T
o Eineiiag CENUIEESE Ehmes . ~—— NodeJs: Bigger code
4816 32 64 128 4816 32 64 128 4816 32 64 128 4816 32 64 128 . _— fOOtprlnt
json_dumps markdown_to_html ocr_img sentiment W -~
0- 6-7 2- i
- € L 15+ 6=
3 - L 2 =" - ;1‘1‘10- 1 ///// 3 -
\ 5""Eg;i"""~~~><::f/ =
0= - 0- ——— . 0- Se————- 0 - -
481632 64 128 481632 64 128 4 816 32 64 4816 32 64 128
fib_js_1000 f'b/'(wﬁtO(fib_js_100000 fib, 1000\ .
o e . 100ey e ~_ Python: Smaller code
“ 7.5+ .
s0- \ footprint
~ >~ _—~ 25 T
0- (N IWHT‘T' N el 0- [I\\:\ o 0- 1 x{‘{:f:' =l 0.0- oo 1
481632 64 128 481632 64 128 481632 64 128 4816 32 64 128 . .
fio_py_10000 . fb_py 100000 Shared object Confirms hypOth esIS
6-} \ - [vdso] .
o 23 o about the impact of
2- 3 - 3 i libnghttp2 . 1
0- ‘ms 0- ms T Hgggt%%ns.m funCtlon COde fOOtprlnt
= libuv

Cache size (KB) - libz

Conclusions

* Microarchitectural structures warm up quickly

* Only certain functions benefit from warm
microarchitectural states

- Functions with short runtimes (< 1ms) and
— Functions with large code footprints

* Such functions are quite uncommon

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

