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© Applications for intrusion detection in loT
© Applications for fraud detection in the financial sector
@ Applications for intrusion detection in B5G

© Future Work
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research in Federated Learning

Basic research
in Federated
Learning

.........

Comparison among centralized, distributed and federated learning [1]

@ Training data never leaves the device
@ Model training computation is decentralized
@ Access to larger amounts of data

o Final models deployed closer to the users
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Basic research in Federated Learning

- Challenges: Constrained IoT
devices, ML requirements, security.
in edge computing architectures.
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incentives to devices.

Challenges/directions in FL applied to intrusion detection in loT [1]

@ Publication in Elsevier Computer Networks [1]
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Applications for intrusion detection in loT (review)
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Comparison of avg. accuracy among scenarios [1]

o Different data distributions (basic, balanced, mixed) from
ToN-loT dataset [2]

o Different aggregation algorithms (FedAvg, Fed+)

e Multiclass Probabilistic Classification model (Logistic
Regression)
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Applications for intrusion detection in loT (Diff
Privacy)

Applications
for intrusion
detection in
loT

Architecture proposal for DP-based Federated Learning [3]

@ Proposed workflow integrating DP /noise-adding in the FL
process

o Tested and compared different noise-adding mechanisms
(Gaussian, Laplace, Uniform, etc.)

@ Tested and compared different privacy levels and measured

the impact on accuracy
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Applications for intrusion detection in loT (Diff
Privacy)

Applications
for intrusion
detection in
loT

Avg. accuracy for each noise-adding mechanism (FedAvg/Fed+) [3]

@ Publication in IEEE Transactions on Industrial Informatics
3] .
/20
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e Applications for fraud detection in the financial sector
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Applications for fraud detection in the financial
sector

~PERMISSIONED BLOCKEHAIN

Ao Architecture proposal for CYTILIS [4]

for fraud
detection in
the financial

sector @ Developed in the context of H2020 CyberSec4Europe
project

e Evaluation using a Multi-layer Perceptron (MLP) and FL
training over synthetic fraudulent transactions dataset
(PaySim) [5]

o Integration with CTI platform (MISP) and
DLT/Blockchain technologies
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for fraud
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the financial
sector

Applications for fraud detection in the financial
sector

—— clear data (client 0)
-=- clear data (client 1)
—— 2 digits supressed (client 0)
=== 2digits supressed (client 1)
— 4 digits supressed (client 0)
=== 4digits supressed (client 1)
—— 6 digits supressed (client 0)
=== 6 digits supressed (client 1)
~—— no account identifiers (client 0)
~~~ no accounts identifiers (client 1)

Accuracy

@ Measured the impact on accuracy of supressing digits from
transaction’s origin and destination accounts

@ Publication as a book chapter in Digital Sovereignty in
Cyber Security: New Challenges in Future Vision [4]
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Applications
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Applications for intrusion detection in B5G (FL
orchestration)
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UEs-Devices Radio-Access Network (RAN)  Transport

Architecture proposal for FL orchestration in B5G

Applications
for intrusion

detection in @ Policy-based orchestration of FL entities (agents,
aggregators)

o Crafting of a policy for deploying/configuring FL entities

@ Proposed proactive/reactive workflows for intrusion
detection

B5G
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Applications for intrusion detection in B5G (FL
orchestration)

Learning Resource
Parameters Orchestration
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Applications Parameters
for intrusion
detection in

B5G

Policy for orchestrating FL entities

@ Publication in IEEE Future Networks World Forum 2023
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Future Work

Generation and usage of a dataset from UMU 5G testbed
(user and control-plane attacks)

Applications in Intelligent Transportation Systems (ITS)
environments

Evaluation of dynamic orchestration and integration with
monitoring/mitigation mechanisms (closed loop)

Research on Decentralized Federated Learning (DFL)
frameworks and techniques

Optimize implementation, models and data processing
Future Work techniques used until now
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