
Serverless Confidential Containers:
Challenges and Opportunities

Carlos Segarra
(w/ Tobin Feldman-Fitzthum and Daniele Buono)

Large-Scale Data & Systems (LSDS) Group - Imperial College London

Visiting IBM TJ Watson (Sep'23 – Nov'23)

https://carlossegarra.com
<cs1620@ic.ac.uk>

9th International Workshop on Serverless Computing (WOSC)

Large-Scale Data & Systems Group



Agenda

1. Introduction to Confidential Serverless
- Characterising serverless functions: Cold/Warm starts and burstiness
- Problems with existing serverless offerings
2. Background:
- Design space for confidential serverless
- Kata and Confidential Containers
3. PoC: Knative on Confidential Containers
4. Evaluation
- Cold-Starts
- Warm-Starts
- Instantiation Throughput

Carlos Segarra - Imperial College London 2



Introduction: Serverless Functions

Carlos Segarra - Imperial College London 3

Frontend

(Functions)

Register

Events
Worker

Worker

Worker



Introduction: Characterizing Serverless Functions

Carlos Segarra - Imperial College London 4

[ATC’20] Serverless in the Wild: Characterizing and Optimizing the Serverless Workload 
at a Large Cloud Provider

Functions are short-lived! 
(90% shorter than 10s)

Functions are bursty!



Introduction: Characterizing Serverless Functions

Carlos Segarra - Imperial College London 5

[SoCC'23] How Does It Function? Characterizing Long-term Trends in Production Serverless Workloads

Only 40% of functions take 
less than 1s to start

Yet 80% of functions 
execute in < 100 ms !



Introduction: Problems in Serverless

Carlos Segarra - Imperial College London 6

• Cold-Start: how long does it take 
to serve a request for a new 
function?

• Warm-Start: how long does it take 
to serve subsequent requests?

• Instantiation Throughput: how 
many (concurrent) invocations of 
this function can we serve per 
second?

Frontend

Worker

HTTP

< 1s 50ms 15k cps

[ATC’23] On-demand Container Loading in AWS Lambda



Introduction: Inter-Function Isolation in Serverless

Carlos Segarra - Imperial College London 7

Security

Performance Usability

VM-like Isolation is the only 
acceptable isolation mechanism

OCI images are the de-facto 
mechanism to express functions (and 

their dependency closure)

Performance Tricks: 
micro-VMs, VM snapshots, 

and VM re-use



Introduction: More Problems in Serverless!

Carlos Segarra - Imperial College London 8

Inter-function isolation is fine, but not 
enough!  K8S Node

kubelet

Knative Service A

Pod

Knative Sidecar
Knative Controller

Pod

Srvc. A

Register

Srvc. A

HTTP



Introduction: More Problems in Serverless!

Carlos Segarra - Imperial College London 9

Inter-function isolation is fine, but not 
enough! 
We need isolation from the host 
environment to guarantee...
- Data Confidentiality
- Code Confidentiality
- Execution Integrity

K8S Node

kubelet

Knative Service A

Pod

Knative Sidecar
Knative Controller

Pod

Srvc. A

HTTP (Srv. A)

Response (Srv. A?)

Confidential Computing



Background: Design Space for Confidential Serverless

Carlos Segarra - Imperial College London 10

K8S Node

kubelet

Knative Service 1

Pod

Knative Sidecar

Knative Service 2

Pod

Knative Sidecar

K8S Node

kubelet

Knative Service 3

Pod

Knative Sidecar

Knative Controller

Pod

Process-Centric Security



Background: Design Space for Confidential Serverless

Carlos Segarra - Imperial College London 11

K8S Node

kubelet

Knative Service 1

Pod

Knative Sidecar

Knative Service 2

Pod

Knative Sidecar

K8S Node

kubelet

Knative Service 3

Pod

Knative Sidecar

Knative Controller

Pod

Process-Centric Security

Pod-Centric Security



Background: Design Space for Confidential Serverless

Carlos Segarra - Imperial College London 12

K8S Node

kubelet

Knative Service 1

Pod

Knative Sidecar

Knative Service 2

Pod

Knative Sidecar

K8S Node

kubelet

Knative Service 3

Pod

Knative Sidecar

Knative Controller

Pod

Process-Centric Security

Pod-Centric Security

Node-Centric Security



Background: Design Space for Confidential Serverless

Carlos Segarra - Imperial College London 13

K8S Node

kubelet

Knative Service 1

Pod

Knative Sidecar

Knative Service 2

Pod

Knative Sidecar

K8S Node

kubelet

Knative Service 3

Pod

Knative Sidecar

Knative Controller

Pod

Process-Centric Security

Pod-Centric Security

Node-Centric Security

-TCB & Usability + TCB & Usability

- Attack Surface + Attack Surface

Process-Centric Pod-Centric Node-Centric



Background: Design Space for Confidential Serverless

Carlos Segarra - Imperial College London 14

K8S Node

kubelet

Knative Service 1

Pod

Knative Sidecar

Knative Service 2

Pod

Knative Sidecar

K8S Node

kubelet

Knative Service 3

Pod

Knative Sidecar

Knative Controller

Pod

Process-Centric Security

Pod-Centric Security

Node-Centric Security

https://github.com/confidential-containers

Pod (VM) Pod (VM)

Pod (VM)

Pod (cVM) Pod (cVM)



PoC: Knative on Confidential Containers

Carlos Segarra - Imperial College London 15

K8S Bare Metal Node

Host Kernel

kubelet

containerd

Hypervisor (QEMU + KVM)

Guest Kernel Guest Kernel

Kata Agent Kata Agent

Kn 
Service

Kn
Sidecar

Guest Comp.

Kn
Service

Kn
Sidecar

Guest Comp.

Pod (cVM) Pod (cVM)
CRI

Kn Control Plane

Pod (ns)

runc-shim

kata-shim

shim-v2

Trusted Node

Key Broker Service (KBS)

Secrets DB

Attestation
+ 

Key Prov.

kubectl apply ...

https://github.com/confidential-containers



PoC: Attestation of Knative on CoCo  (AMD SEV)

Carlos Segarra - Imperial College London 16

K8S Bare Metal Node

Host Kernel

kubelet

containerd

QEMU + KVM

CRI

Kn Control Plane

Pod (ns)

runc-shim

kata-shim

shim-v2

Trusted Node (RP)

KBS

Secure Boot Protocol

Ahead-of-Time

User
(Guest Owner)

1. Generate launch measurement
2. Encrypt private container images
3. Sign all container images

Launch SHA

SEV Version: …
OVMF Image: …
Kernel Image: …
Kernel CMD: …
initrd: …

Container Registry

Kn 
Service

Kn
Sidecar

Kn 
Service

Kn
Sidecar

AMD PSP



PoC: Attestation of Knative on CoCo  (AMD SEV)

Carlos Segarra - Imperial College London 17

K8S Bare Metal Node

Host Kernel

kubelet

containerd

QEMU + KVM

Guest Kernel

Kata Agent

Kn 
Service

Kn
Sidecar

KBC

Pod (cVM)CRI

Kn Control Plane

Pod (ns)

runc-shim

kata-shim

shim-v2

Trusted Node (RP)

KBS

Secure Boot Protocol

Ahead-of-Time

1. Generate launch measurement
2. Encrypt private container images
3. Sign all container images

OVMF

image-rs
Launch SHA

Container Registry

Kn 
Service

Kn
Sidecar

Run-time

1. cVM pre-attestation
2. OVMF boot
3. Direct measured kernel boot
4. Kata Agent as /init in initrd
5. Pull encrypted/signed images
6. Request key material
7. Validate Image Signature
8. Decrypt Layers

Kernel_SHA Initrd_SHA

AMD PSP



Evaluation

• We want to evaluate the feasibility of our PoC according to the three key 
metrics we identified for serverless:

Carlos Segarra - Imperial College London 18

1. Cold Start Times 2. Warm Start Times 3. Instantiation Throughput

6s 1s 1 fps

7s 2s 0.5 fps

?? ?? ??



SeaBIOS

Evaluation: Baselines

Carlos Segarra - Imperial College London 19

K8S Bare Metal Node

Host Kernel

kubelet

containerd

QEMU + KVM

Guest Kernel

Kata Agent

Kn 
Service

Kn
Sidecar

KBC

Pod (VM)CRI

Kn Control Plane

Pod (ns)

runc-shim

kata-shim

shim-v2

OVMF

image-rs

Kernel_SHA Initrd_SHA

0. docker (i.e. runc): no VMs
1. kata: VMs
2. coco-nosev: + pull in guest
3. coco-nosev-ovmf: + OVMF
4. coco: + SEV
5. coco-fw: + HW att
6. coco-fw-sig: + image signature
7. coco-fw-sig-enc: + image enc.

Pod (cVM)

Knative Service is a simple "Hello 
World" in Python



Evaluation: Cold/Warm Starts

Carlos Segarra - Imperial College London 20

Observations:
1. Why is VM start-up 4x slower with SEV?
2. Why is image pulling 2-3x slower w.r.t docker?
3. Why are there no warm starts?

Let us address these questions one by one

Additional 10 s!



Evaluation: VM Start-Up in detail

Carlos Segarra - Imperial College London 21

Q1: Why is VM start-up 3x slower with SEV?

A: It seems that we spend a lot of time in OVMF...



Evaluation: VM Start-Up in detail

Carlos Segarra - Imperial College London 22

Q1: Why is VM start-up 3x slower with SEV?

10x in start-vm (i.e. QEMU cmd)

50-100x in virtual FW!

start-vm: Provisioning guest memory (pages 
introduces 1-2 extra seconds (for 2GB of memory)

virtual-fw: OVMF DXE driver initialization 
introduces 3-4 extra seconds



Evaluation: VM Start-Up in detail (ctd)

Carlos Segarra - Imperial College London 23

A: During the start-vm phase, 
QEMU provisions all the memory pages 

assigned to the guest

Q1: Why is VM start-up 3x slower with SEV?



Evaluation: VM Start-Up in detail (ctd)

Carlos Segarra - Imperial College London 24

A: During the start-vm phase, the PSP 
provisions all the memory pages 

assigned to the guest

Q1: Why is VM start-up 3x slower with SEV?

Suggested Solution:
- Can we assign memory pages lazily, off the hot-path?

Serverless CoCo Task 1: Optimize cVM 
provisioning



Evaluation: VM Start-Up in detail

Carlos Segarra - Imperial College London 25

Q1: Why is VM start-up 3x slower with SEV?

A: It seems that we spend a lot of time in OVMF...



Evaluation: VM Start-Up in detail

Carlos Segarra - Imperial College London 26

Q1: Why is VM start-up 3x slower with SEV?

A: We spend 3-4 more seconds in OVMFA: It seems that we spend a lot of time in OVMF...

A: Compared to a non-SEV VM (w/ OVMF) we spend:

4-5x in virtual FW!
Q: What is the difference between 

SEV/non-SEV OVMF?

A: For SEV, we measure and verify kernel/initrd/cmdline



Evaluation: VM Start-Up in detail

Carlos Segarra - Imperial College London 27

Q1: Why is VM start-up 3x slower with SEV?

A: We spend 3-4 more seconds in OVMFA: It seems that we spend a lot of time in OVMF...

A: Compared to a non-SEV VM (w/ OVMF) we spend:

Q: What is the difference between 
SEV/non-SEV OVMF?

A: For SEV, we measure and verify kernel/initrd/cmdline



Evaluation: VM Start-Up in detail

Carlos Segarra - Imperial College London 28

Q1: Why is VM start-up 3x slower with SEV?

A: We spend 3-4 more seconds in OVMFA: It seems that we spend a lot of time in OVMF...

A: Compared to a non-SEV VM (w/ OVMF) we spend:

20x initializing drivers!

Blob measurement/verification 
happens here

This behaviour is unexpected
(we are in contact w/ AMD about it)



Evaluation: Cold/Warm Starts

Carlos Segarra - Imperial College London 29

Observations:
1. Why is VM start-up 4x slower with SEV?
2. Why is image pulling 2-3x slower w.r.t docker?
3. Why are there no warm starts?

Problem: Provisioning guest memory pages 
introduces 1-2 extra seconds (for 2GB of memory)

Solution: Hot-Plug guest memory pages (or 
provision off the hot path)

Problem: OVMF DXE driver initialization introduces 
3-4 extra seconds

Solution: Not clear! Talk to AMD folks!



Evaluation: VM Start-Up in detail

Carlos Segarra - Imperial College London 30

Q2: Why is image-pulling 2x slower w.r.t Docker?

A: containerd's PullImage becomes blocking!

A(ctd): Decrypting image layers is the bottleneck!

Time pulling app. Image
(encrypted + signed)

"" sidecar Image
(signed)

decompress + decrypt decompress 



Evaluation: VM Start-Up in detail

Carlos Segarra - Imperial College London 31

Q3: Why are there no warm starts?

Serverless CoCo Task 3: Design Secure CoCo sandbox 
re-use strategies

A: SEV guests are cryptographically bound to 
one "guest owner"

A: Cannot rely on the host to mount container images

A: Cannot easily share (or lazy load) encrypted image layers

Suggested Solutions:
- Use the KBS as trusted relying-party in VM pre-warm
- Freeze the Kata Agent until pre-warmed VM is assigned
- Encrypted block-based lazy image loading (Nydus)
- Label image layers as encrypted or not



Evaluation: Instantiation Throughput

Carlos Segarra - Imperial College London 32

Starting 16 concurrent 
functions takes > 3' !!



Evaluation: Instantiation Throughput (ctd.)

Carlos Segarra - Imperial College London 33

Q: Why Starting 16 concurrent functions takes > 3'?

A: We are being throttled by the registry!



Evaluation

• We want to evaluate the feasibility of our PoC according to the three key 
metrics we identified for serverless:

Carlos Segarra - Imperial College London 34

1. Cold Start Times 2. Warm Start Times 3. Instantiation Throughput

17.5 s 17.5 s ~ 0.1 cps

7s 2s 0.5 fps

6s 1s 1 fps



FYP CoCo: Summary

Carlos Segarra - Imperial College London 35

1. Cold Start Times 2. Warm Start Times 3. Instantiation Throughput

2.5x 8.75x 5x

Slowdown

cVM Start-Up Overhead
1) Guest Memory Pages 

Provisioning
2) OVMF DXE Initialization

Guest-Side Image Pulling
1) Serial (per-ctr) pulling
2) Image Layer Decryption

No CoCo pre-warming
1) SEV Guests <-> owner

No Image Re-Use
1) Cannot mount images 

from host
2) Cannot share images 

between tenants
3) Cannot lazy load images

Registry Throttling
1) If all CoCo's pull from the 

guest, cannot scale w/out 
pass-through cache

2) Will benefit from 
improvements in warm 
starts



Serverless Confidential Containers:
Challenges and Opportunities

Carlos Segarra
(w/ Tobin Feldman-Fitzthum and Daniele Buono)

Large-Scale Data & Systems (LSDS) Group - Imperial College London

Visiting IBM TJ Watson (Sep'23 – Nov'23)

https://carlossegarra.com
<cs1620@ic.ac.uk>

IBM TJ Watson – Thursday, November 16th 2023

Large-Scale Data & Systems Group



FYP CoCo: Summary

• Confidential Containers are a very promising technology for zero-friction 
adoption of confidential computing in the cloud. However...

• still very far from being usable in challenging environments like serverless!

Carlos Segarra - Imperial College London 37

Good news is that there is a lot of low-hanging fruit!

Serverless CoCo Task 4: 
Improve Scalability of CoCo 

sandbox provisioning

Serverless CoCo Task 3: Design 
Secure CoCo sandbox re-use 

strategies

Serverless CoCo Task 1: Optimize 
cVM provisioning

Serverless CoCo Task 2: 
Optimize Image Pulling Time


