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Agenda

1. Introduction to Confidential Serverless
- Characterising serverless functions: Cold/Warm starts and burstiness
- Problems with existing serverless offerings
2. Background:
- Design space for confidential serverless
- Kata and Confidential Containers
3. PoC: Knative on Confidential Containers
4. Evaluation
- Cold-Starts
- Warm-Starts
- Instantiation Throughput
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Introduction: Serverless Functions
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Introduction: Characterizing Serverless Functions
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[ATC’20] Serverless in the Wild: Characterizing and Optimizing the Serverless Workload 
at a Large Cloud Provider

Functions are short-lived! 
(90% shorter than 10s)

Functions are bursty!



Introduction: Characterizing Serverless Functions
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[SoCC'23] How Does It Function? Characterizing Long-term Trends in Production Serverless Workloads

Only 40% of functions take 
less than 1s to start

Yet 80% of functions 
execute in < 100 ms !



Introduction: Problems in Serverless
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• Cold-Start: how long does it take 
to serve a request for a new 
function?

• Warm-Start: how long does it take 
to serve subsequent requests?

• Instantiation Throughput: how 
many (concurrent) invocations of 
this function can we serve per 
second?

Frontend

Worker

HTTP

< 1s 50ms 15k cps

[ATC’23] On-demand Container Loading in AWS Lambda



Introduction: Inter-Function Isolation in Serverless
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Security

Performance Usability

VM-like Isolation is the only 
acceptable isolation mechanism

OCI images are the de-facto 
mechanism to express functions (and 

their dependency closure)

Performance Tricks: 
micro-VMs, VM snapshots, 

and VM re-use



Introduction: More Problems in Serverless!
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Inter-function isolation is fine, but not 
enough!  K8S Node
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Introduction: More Problems in Serverless!
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Inter-function isolation is fine, but not 
enough! 
We need isolation from the host 
environment to guarantee...
- Data Confidentiality
- Code Confidentiality
- Execution Integrity

K8S Node

kubelet

Knative Service A

Pod

Knative Sidecar
Knative Controller

Pod

Srvc. A

HTTP (Srv. A)

Response (Srv. A?)

Confidential Computing



Background: Design Space for Confidential Serverless
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Background: Design Space for Confidential Serverless
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Background: Design Space for Confidential Serverless
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Background: Design Space for Confidential Serverless
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-TCB & Usability + TCB & Usability

- Attack Surface + Attack Surface

Process-Centric Pod-Centric Node-Centric



Background: Design Space for Confidential Serverless
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https://github.com/confidential-containers
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PoC: Knative on Confidential Containers
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https://github.com/confidential-containers



PoC: Attestation of Knative on CoCo  (AMD SEV)
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PoC: Attestation of Knative on CoCo  (AMD SEV)
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3. Direct measured kernel boot
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Evaluation

• We want to evaluate the feasibility of our PoC according to the three key 
metrics we identified for serverless:
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1. Cold Start Times 2. Warm Start Times 3. Instantiation Throughput

6s 1s 1 fps

7s 2s 0.5 fps

?? ?? ??



SeaBIOS

Evaluation: Baselines
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K8S Bare Metal Node
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0. docker (i.e. runc): no VMs
1. kata: VMs
2. coco-nosev: + pull in guest
3. coco-nosev-ovmf: + OVMF
4. coco: + SEV
5. coco-fw: + HW att
6. coco-fw-sig: + image signature
7. coco-fw-sig-enc: + image enc.

Pod (cVM)

Knative Service is a simple "Hello 
World" in Python



Evaluation: Cold/Warm Starts
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Observations:
1. Why is VM start-up 4x slower with SEV?
2. Why is image pulling 2-3x slower w.r.t docker?
3. Why are there no warm starts?

Let us address these questions one by one

Additional 10 s!



Evaluation: VM Start-Up in detail
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Q1: Why is VM start-up 3x slower with SEV?

A: It seems that we spend a lot of time in OVMF...



Evaluation: VM Start-Up in detail
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Q1: Why is VM start-up 3x slower with SEV?

10x in start-vm (i.e. QEMU cmd)

50-100x in virtual FW!

start-vm: Provisioning guest memory (pages 
introduces 1-2 extra seconds (for 2GB of memory)

virtual-fw: OVMF DXE driver initialization 
introduces 3-4 extra seconds



Evaluation: VM Start-Up in detail (ctd)
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A: During the start-vm phase, 
QEMU provisions all the memory pages 

assigned to the guest

Q1: Why is VM start-up 3x slower with SEV?



Evaluation: VM Start-Up in detail (ctd)
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A: During the start-vm phase, the PSP 
provisions all the memory pages 

assigned to the guest

Q1: Why is VM start-up 3x slower with SEV?

Suggested Solution:
- Can we assign memory pages lazily, off the hot-path?

Serverless CoCo Task 1: Optimize cVM 
provisioning



Evaluation: VM Start-Up in detail
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Q1: Why is VM start-up 3x slower with SEV?

A: It seems that we spend a lot of time in OVMF...



Evaluation: VM Start-Up in detail
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Q1: Why is VM start-up 3x slower with SEV?

A: We spend 3-4 more seconds in OVMFA: It seems that we spend a lot of time in OVMF...

A: Compared to a non-SEV VM (w/ OVMF) we spend:

4-5x in virtual FW!
Q: What is the difference between 

SEV/non-SEV OVMF?

A: For SEV, we measure and verify kernel/initrd/cmdline



Evaluation: VM Start-Up in detail
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Q1: Why is VM start-up 3x slower with SEV?

A: We spend 3-4 more seconds in OVMFA: It seems that we spend a lot of time in OVMF...

A: Compared to a non-SEV VM (w/ OVMF) we spend:

Q: What is the difference between 
SEV/non-SEV OVMF?

A: For SEV, we measure and verify kernel/initrd/cmdline



Evaluation: VM Start-Up in detail
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Q1: Why is VM start-up 3x slower with SEV?

A: We spend 3-4 more seconds in OVMFA: It seems that we spend a lot of time in OVMF...

A: Compared to a non-SEV VM (w/ OVMF) we spend:

20x initializing drivers!

Blob measurement/verification 
happens here

This behaviour is unexpected
(we are in contact w/ AMD about it)



Evaluation: Cold/Warm Starts
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Observations:
1. Why is VM start-up 4x slower with SEV?
2. Why is image pulling 2-3x slower w.r.t docker?
3. Why are there no warm starts?

Problem: Provisioning guest memory pages 
introduces 1-2 extra seconds (for 2GB of memory)

Solution: Hot-Plug guest memory pages (or 
provision off the hot path)

Problem: OVMF DXE driver initialization introduces 
3-4 extra seconds

Solution: Not clear! Talk to AMD folks!



Evaluation: VM Start-Up in detail
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Q2: Why is image-pulling 2x slower w.r.t Docker?

A: containerd's PullImage becomes blocking!

A(ctd): Decrypting image layers is the bottleneck!

Time pulling app. Image
(encrypted + signed)

"" sidecar Image
(signed)

decompress + decrypt decompress 



Evaluation: VM Start-Up in detail
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Q3: Why are there no warm starts?

Serverless CoCo Task 3: Design Secure CoCo sandbox 
re-use strategies

A: SEV guests are cryptographically bound to 
one "guest owner"

A: Cannot rely on the host to mount container images

A: Cannot easily share (or lazy load) encrypted image layers

Suggested Solutions:
- Use the KBS as trusted relying-party in VM pre-warm
- Freeze the Kata Agent until pre-warmed VM is assigned
- Encrypted block-based lazy image loading (Nydus)
- Label image layers as encrypted or not



Evaluation: Instantiation Throughput
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Starting 16 concurrent 
functions takes > 3' !!



Evaluation: Instantiation Throughput (ctd.)
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Q: Why Starting 16 concurrent functions takes > 3'?

A: We are being throttled by the registry!



Evaluation

• We want to evaluate the feasibility of our PoC according to the three key 
metrics we identified for serverless:
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1. Cold Start Times 2. Warm Start Times 3. Instantiation Throughput

17.5 s 17.5 s ~ 0.1 cps

7s 2s 0.5 fps

6s 1s 1 fps



FYP CoCo: Summary
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1. Cold Start Times 2. Warm Start Times 3. Instantiation Throughput

2.5x 8.75x 5x

Slowdown

cVM Start-Up Overhead
1) Guest Memory Pages 

Provisioning
2) OVMF DXE Initialization

Guest-Side Image Pulling
1) Serial (per-ctr) pulling
2) Image Layer Decryption

No CoCo pre-warming
1) SEV Guests <-> owner

No Image Re-Use
1) Cannot mount images 

from host
2) Cannot share images 

between tenants
3) Cannot lazy load images

Registry Throttling
1) If all CoCo's pull from the 

guest, cannot scale w/out 
pass-through cache

2) Will benefit from 
improvements in warm 
starts
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FYP CoCo: Summary

• Confidential Containers are a very promising technology for zero-friction 
adoption of confidential computing in the cloud. However...

• still very far from being usable in challenging environments like serverless!
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Good news is that there is a lot of low-hanging fruit!

Serverless CoCo Task 4: 
Improve Scalability of CoCo 

sandbox provisioning

Serverless CoCo Task 3: Design 
Secure CoCo sandbox re-use 

strategies

Serverless CoCo Task 1: Optimize 
cVM provisioning

Serverless CoCo Task 2: 
Optimize Image Pulling Time


