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Welcome & BIO

=PrL 2011-2017: PhD CS “Compute Architecture/DBMS/0OS/Cloud”

WV 2018-2019: Senior/Principal Engineer — OS R&D Dept.

HUAWEI

Y2 nuawercioun  2019+: Engineering Manager — Huawei Cloud R&D

HUAWEI

IS

Dr. Javier Picorel

Find me @ Middlewar’23 and let’s chat!
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HUAWEI CLOUD: Empowering Applications and Harnessing the Value of Data for an Intelligent World

Fastest-growing cloud
600+ 220+ 300+

e-Government Financial SAP on Cloud N o u 2 N O . 5

clouds in China customers customers
China market Global market
0 1)
70 /0 3O+ 93 A) Source: Gartner: Market Share: IT Services, Worldwide 2020, laaS market
Top 50 Internet  Top automobile Top15 genetics
customers manufacturers companies

CN North-Beijing1 23
CN Northwest-Karamay ¢ _ CN Northeast-Dalian |— Regions —|
CN North-Beijing4 9, CN East-Shanghai
CN Southwest-Guiyang qé/ _ CN East-Shanghai2
\\9 s

Latin America-Mexico City 45
N CN South-Guangzhou ?¢  CN South-Shenzhen
! e . Asia Pacific-Hong Kong |— AZs —|
Latin America-Lima Asia Pacific-Singapore @ Asia Pacific-Bangkok

N 2500

Q .
Latin America-San Diego o South Africa-Johannesburg +

CR “._Latin America — Sao Paulo |— CDN nodes —l

. Latin America-Buenos Aires

*Huawei partners' public
clouds included
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HUAWEI CLOUD Technology Stack: Continuously Innovating to Develop a Full Range of Products

220+ cloud services for 15 industries, and 210+ general and industrial solutions

Featured SaaS : Professional . :
Marketplace  products Mall applications Industry suites services Industry solutions Pan-government  Pan-enterprise Pan-finance Pan-Internet
4 types of Connecting applications Connecting developers Connecting things Connecting organizations

connections

3 types of technology enablement services

£
(]
e}
n
>
()
g
(o) ROMA (application enablement) ModelArts (Al enablement) DAYU (data enablement)
= Manage applications throughout lifecycle Accelerate Al adoption by industry Unleash the value of data
© 9
| o
g Industry application assets - ROMA Exchange Knowledge compute Data asset center - DAYU Hub
O SR SERIEEE & EEelliEs - ROl SOES BBt Industry Suite - ModelArts Pro Data enablement suite - DAYU Ekit
"E' E2E agile development - ROMA Factory I T =— : ntell — I .

e Al development pipeline - ModelArts Fundamenta ntelligent data lake - FusionInsight
2 Unified platform - ROMA Connect
o
u>a’ Edge Device
> 1 foundation: cloud infrastructure powered by the QingTian architecture 9
= CDN
S Device loT module
8 Compute services  Storage services Network services Security services  Database services IEF
/) IEC

QingTian architecture IES loT SDK

5 deployment

scenarios Hybrid cloud Full-stack dedicated cloud Public cloud Edge data center Enterprise edge site
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Why Cloud Computing?

Bringing Pokemon GO to life on Google Cloud

September 30, 2016

Cloud Datastore Transactions Per Second

1X

Target Traffic

oX

Worst Case
Estimate

o0X

Actual Traffic

=== Original Launch Target Estimated Worst Case

When you cannot buy server blades fast enough (or you don’t know how many to buy)
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https://cloud.google.com/blog/products/containers-kubernetes/bringing-pokemon-go-to-life-on-google-cloud

Why Serverless Computing?

DO0I:10.1145/3406011

Figure 1. Cloud computing approaches compared to rides from an airport: Serverful as

The evolution that serverless computing renting a car and serverless as taking a taxi ride.
represents, the economic forces
that shape it, why it could fail,

and how it might fulfill its potential.

BY JOHANN SCHLEIER-SMITH, VIKRAM SREEKANTI,

ANURAG KHANDELWAL, JOAO CARREIRA, NEERAJA J. YADWADKAR,
RALUCA ADA POPA, JOSEPH E. GONZALEZ, ION STOICA,

AND DAVID A. PATTERSON

What Serverless Computing M W
Is and Should Become: g R

The Next Phase of

[ SERVERFUL COMPUTING SERVERLESS COMPUTING
CIOUd com putl ng Pick your Style: Compute: $0.001667¢/sec
Compute-optimized: $3.00/hr. Storage: $0.000001¢/GB-sec
Memory-optimized: $2.00/hr.
([ J (
Disk Space %l,
PREMIUM Faster Network ® b Glu hg
UPGRADES Load Balancing
Monitoring ﬁ

Just pay for the ride and forget about operating, driving, and maintaining the vehicle

HuAwel | CENTER


https://cacm.acm.org/magazines/2021/5/252179-what-serverless-computing-is-and-should-become/
https://cacm.acm.org/magazines/2021/5/252179-what-serverless-computing-is-and-should-become/

Cost of Serverless Computing

What do you pay for? How much do you pay for it?
Table 1. Resource unit prices in AWS (as of September 2022).
A
// On-premise servers Resource type Lambda EC2 on-demand EC2 spot
;-_ ' Serverful (charged by reservation) 9 EC2 CPU (¢/core-h) 10 ~—2X> 4.8 1.1
RAM (¢/GB-h) 6 i, 1.2 0.27
S L h foridle)
= 5 - erverless no charge for dle) = | ambda Network (¢/Gbps-h) ~ 85.71 —"2X, 15.36 3.53
HE:
% i Using Cloud Functions as Accelerator for Elastic Data Analytics,
S 5 / Haogiong et al.
38
g8
@ S
= / /
i
-

Time

You only pay for what you use...but cost is “2x-~5x more expensive given same time
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https://cacm.acm.org/magazines/2021/5/252179-what-serverless-computing-is-and-should-become/
https://cacm.acm.org/magazines/2021/5/252179-what-serverless-computing-is-and-should-become/

Outline

* The good, the bad, and the ugly
 Toward short-lived clouds

e Serverless computing in Al-centric clouds
* Conclusion
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The Good, the Bad, and the Ugly

Good: Resource Allocation

* Zero provisioning Bare metal -

e Autoscaling & Fast start-up times

-
* Fine-grained pricing FAEE ....
-

* Fine-grained resource allocation T ——

Lambda OO0 OO0 OO0 OOO
000 000 000 000

Bad:
e Limited execution time @ &, >15min

e Lack of lambda-to-lambda communication )(

* Fixed memory-to-compute ratios EEE:::--- mou
e Restricted to CPUs

CPU

Ugly:
* No control of execution and deployment

Autoscaling

Requests

“From zero to infinite, no provisioning required”

Pay-as-you-go
Complexity code

Reduce
cost

k RN /

Monolith Microservices Serverless
“You only pay for every 100ms that code is running
and number of times it’s triggered”

What are the implications to real-world applications?
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Mostly Simple Applications Benefit from Serverless Today

File Processing Web Application
User 8 User 8 ::
l Upload Image l HTTP Rest
| |
API Gateway :‘1 3 API Gateway 3

GET DELETE

PUT Image l Trigger

|
S3 Lambda File
Processing delete

PUT Image DynamoDB

Serverless computing exhibits several limitations but...which of these are really fundamental?
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Bad: Limited Execution Time

Release of AWS Lambda Update on AWS Lambda Features

ﬂ Max. Execution Time:

v

Max. Execution Time:

2014 5 min 15 min
Configuring Lambda function options
PDF | RSS
Configuring function timeout (console) il ik —
| i
Lambda runs your code for a set amount of time before timing out. Timeout is the maximum amount of I 7 atias axewgg«.cti»«e = | >
time in seconds that a Lambda function can run. The default value for this setting is 3 seconds, but you 5’\‘
timeout s’

can adjust this in increments of 1 second up to a maximum value of 15 minutes.

Not fundamental = Arbitrary decision (some average) on current limited execution time
HuAwel | CENTER



https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-common.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-common.html

Bad: Lack of Lambda-to-Lambda Communication

Boxer [Wawrzoniak’23] XDT [Ustiugov’23]

Relies on NAT punching Extends Knative Queue/Proxy Component
Seed Serverless autoscaling infrastructure
Control Path  Data Path QE 71— F\-’efsor-t p-er-/n;ta-nc-e L-l[I/ILatIOn
......... > — C: 18.218.116.207 [ Autoscaler ]4_ —— e ——— n
Tt : \
A B j o bemeeeeeee ¢ Reqtiest new’ \Update the load balancer | Function instance
Perfovrator Ped;ator Perf;ator I ns?an ces f r : Jl. -------- 3
Vs n ;'1 - t” ' \ ' Queue ! :
< < Invoke Activator ' '
_ _ functions — 1 Proxy (QP) '
1 1
A B . : —1 | A ‘ '
Choose /nsrance to " FOrWard invocations
. . forward invocationstos = = = = = = = = CICIC IR J
Figure 1: Networked serverless functions use a Seed process Lo e e o e e mmmmmmm - J

to connect functions during the startup. After the startup phase,

: Figure 1: Operation of serverless autoscaling infrastructure.
the seed process is no longer needed.

Producer() instance | Consumer() instance J

Po | A7] I
1| |s

Perforator’ 4L 2 -« » Perforator, @

o |

Activator & ]
Autoscaler

@ Invoke consumers  (2)Forward invocations

Functiong Function,

NAT

Figure 3: Opening TCP connection by process Py to process . . .
Py running in a remote function. Figure 3: XDT architecture overview.

Not fundamental = Published and on-going work shows it’s possible
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https://arxiv.org/pdf/2202.06646.pdf
https://arxiv.org/pdf/2309.14821v1.pdf

Bad: Fixed Memory-to-Compute Ratios

Memory and computing power

Memory is the principal lever available to Lambda developers for controlling the performance of a function. You can configure the amount
of memory allocated to a Lambda function, between 128 MB and 10,240 MB. The Lambda console defaults new functions to the smallest
setting and many developers also choose 128 MB for their functions.

the amount of CPU, increasing the overall computational power available. If a function is CPU-, network- or memory-bound, then changing
the memory setting can dramatically improve its performance.

(a) (b)
25
. . 2.5
With Great Freedom Comes Great Opportunity: 620
. . e &1s
Rethinking Resource Allocation for 2
. 35001 Decoupled(m5) 2 05
Serverless Functions _ 3000 — Fixed CPU -
g 2500 4 — Prop. CPU 0.0 obe, \$ Q}yoé ,oc(- é’)
Muhammad Bilal* Marco Canini 2 20001 Decoupled Sof &
IST(ULisboa)/INESC-ID and UCLouvain KAUST g 1500 1 N ¢
g 1000 B Decoupled W Decoupled (m5) s Prop. CPU W Fixed CPU
Rodrigo Fonseca Rodrigo Rodrigues 500
Azure Systems Research IST(ULisboa)/INESC-ID 0 . i : i i i Figure 3. Potential gains within each search space. The
m5 m5a ¢5 c5a c¢6g még graphs show the best (a) Execution Time (ET) and (b) Ex-
CPU (type and share) ecution Cost (EC) of each function across different search

spaces, normalized to the overall best configuration.

Not fundamental = Arbitrary decision (some average) on current ratios
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https://docs.aws.amazon.com/lambda/latest/operatorguide/computing-power.html
https://sands.kaust.edu.sa/papers/serverless.eurosys23.pdf

Bad: Restricted to Off-the-shelf CPUs

aws AWS Lambda Functions Powered by AWS Graviton2 Processor — Run
Your Functions on Arm and Get Up to 34% Better Price Performance

Architecture Info

(_) AI I baba Cloud Choose the instruction set architecture you want for your function code

x86_64
O armé4

Introduction to serverless GPUs

"Serverless GPU" is an emerging cloud-based GPU service. Serverless GPUs provide on-demand GPU computing resources for you and
you do not have to worry about the underlying infrastructure such as servers. Compared with resident GPU computing resources,
serverless GPUs improve the resource utilization and elasticity and reduce costs. This topic describes the features and benefits of
serverless GPUs.

g@ HUAWEI CLOUD

HUAWEI

GPU Functions

on 2023-05-29 GMT

(%! View PDF

GPU functions provide GPU hardware acceleration for simulation, scientific computing, audio/videos, Al, and image processing to improve service

efficiency.

The following table lists the GPU function specifications.

Not fundamental = Cloud providers have started offering serverless computing in GPUs
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https://www.alibabacloud.com/help/en/fc/use-cases/introduction-to-serverless-gpus
https://www.alibabacloud.com/help/en/fc/use-cases/introduction-to-serverless-gpus
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_2002.html
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_2002.html
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_2002.html
https://aws.amazon.com/blogs/aws/aws-lambda-functions-powered-by-aws-graviton2-processor-run-your-functions-on-arm-and-get-up-to-34-better-price-performance/
https://aws.amazon.com/blogs/aws/aws-lambda-functions-powered-by-aws-graviton2-processor-run-your-functions-on-arm-and-get-up-to-34-better-price-performance/
https://aws.amazon.com/blogs/aws/aws-lambda-functions-powered-by-aws-graviton2-processor-run-your-functions-on-arm-and-get-up-to-34-better-price-performance/
https://aws.amazon.com/blogs/aws/aws-lambda-functions-powered-by-aws-graviton2-processor-run-your-functions-on-arm-and-get-up-to-34-better-price-performance/

Ugly: No Control of Execution and Deployment

Serverful Serverless

Function Function Function Function

VPC
Driver | |Worker| |Worker| | Worker

VM VM VM VM Y
Functions are a black box

v

Driver | | Worker| | Worker| | Worker

Function-as-a-service

4

VMs are a black box VMs are a white box

v v

Cloud Infrastructure Service Cloud Infrastructure Service

[ ] User View [] Provider View

* Lack of control could indeed lead to terrible performance (e.g., locality, overlapping)

Fundamental = It’s the contract between user and provider...but can | use it to my advantage?

HuAwel | CENTER



Recap: The Good, the Bad, and the Ugly

Good:

* Zero provisioning

e Autoscaling & Fast start-up times
* Fine-grained pricing

* Fine-grained resource allocation

Bad:
* Limited execution time - Not fundamental
* Lack of lambda-to-lambda communication =2 Not fundamental

* Fixed memory-to-compute ratios = Not fundamental
* —Restrictedto€PUs-

Ugly:
* No control of execution and deployment - Fundamental, but can | use to my advantage?

What are the implications?
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Outline

 Toward short-lived clouds
e Serverless computing in Al-centric clouds
* Conclusion

MUNICH
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Our Vision: From Provisioned to Short-lived Clouds

Provisioned Cloud Short-lived Cloud
Serverless version of these are based on provisioned Serverless-native services built from the ground up around
software stacks just deployed by the provider (not serverless computing

native serverless)

mn

FaaS » FaaS

Cloud Infrastructure Service Cloud Infrastructure Service
Provisioned services reserve resources Zero provisioning =2 Lowest TCO
 Regardless of demand or utilization * Both providers & users benefit

Short-lived Clouds: Almost all cloud services built around ephemeral functions

HuAwel | CENTER



Recipe to Achieve Short-lived Clouds

Good: _

Zero provisioning
Autoscaling & Fast start-up times
Fine-grained pricing

Fine-grained resource allocation __

Bad:

Limited execution time

Lack of lambda-to-lambda communication

Fixed memory-to-compute ratios

 Restrictedto-CPYs-

Actually exploit the benefits of serverless computing!

__* Do what provisioned services cannot do

Mitigate the limitations (for now)
— * Show providers that it is worth it

_ Turn the lack of control from the user side

Ugly: __Into an advantage for the provider
* No control of execution and deployment __ * Expose relationships between functions

Short-lived Clouds: Almost all cloud services built around ephemeral functions

HuAwel | CENTER



“Starling: A Scalable Query Engine on Cloud Function Services”, Perron et al.
“Lambada: Interactive Data Analytics on Cold Data Using Serverless Cloud Infrastructure”, Muller et al.

Ex p I O it a u to sca I i n g “Using Cloud Functions as Accelerator for Elastic Data Analytics, Bian et al.

“Resource Allocation in Serverless Query Processing”, Kassing et al.

Today’s provisioned platforms (VM-based): A :

= Slow to scale = Difficult to absorb bursts :
=
Insight: Serverless-native analytics are still analytics :

= Always on = Expensive ($SS)
= Can apply established query optimization techniques! AU AR SN NSWS N N S '

[] Cost-optimized B Time-optimized [ Pareto-optimized
A

Cost Model

1 function
Serverless analytics benefits: . . & %
= (Almost) no cold start (100ms to a few seconds) % '
= Elasticity to visit entire Pareto frontier £
= Per query and per stage 'E 10 fundfions
= Able to match the resources to query/dataset o |closest
= Able to achieve sweet spot fvees 100 unctons PO e

Lower is better <« CChe'“”e“ Cost (S)

Serverless-native analytics allows to tailor resources to each query and dataset size
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“Starling: A Scalable Query Engine on Cloud Function Services”, Perron et al.
“Lambada: Interactive Data Analytics on Cold Data Using Serverless Cloud Infrastructure”, Muller et al.

Ex p I O it a u to sca I i n g “Using Cloud Func‘tior‘ls as Accelerator for Elastic !)ata Analytics, Bian et al.

Resource Allocation in Serverless Query Processing”, Kassing et al.

Provisioned i Serverless-native
(user or provider)
~ ~
— i — N
User Query Optimization ! User Query Optimization
Optimize query for current query  Optimize query for any

cluster size “general purpose”
(Fixed # of CUs)

“cluster size”
SQL-on-Faa$ m Z (Variable # of CUs)

|
: m————— ATl e -
Cannot tailor :' ¢’>:‘T 7 v ‘: |' )
: : I
{cu} {cu} clustersize. & 1 ey | || cu? CUI: ' cu T cu} cuI [ [cu !
toqueryand I ;! b ]
: ) N, . - ‘\ ________ " \ ____________________________ V4
dataset! 1 Function 2 Functions 32 Functions
. Any # of functions is possible! We can

tailor cluster
CUEREETD oo
OBS (1GB) (100GB)

and dataset!

(@)
N

(100GB)

Don’t be shy, you can visit the entire Pareto prontier!
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State Checkpointing for Timeout-resilient Functions

Checkpoint state for resuming function after timeout

e Data-plane functions can have huge states (e.g., GBs)

* Control-plane functions tend to have small states (e.g., KBs)

* Timeout of 15 min coarse enough for low overhead (in most cases)

Timeout (15min)

F1: Invoke() % F2: Invoke()
N

Save Load
Checkpoint Checkpoint

v

Timeout-resilient functions via user-level checkpointing
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Create Locality to Reduce Communication

Logical Operator Fusion: Data Locality Aware Algorithm (DLAA)
" Group vertices read the same(similar) data content.
" Transfer all the edges in the group to one single vertex

Original query plan Optimized by DLAA

‘ > Join o Filter /\
‘ Tablescan . Tablescan ‘ Tablescan . Tablescan Tablescan can
(Order) (Lineitem) (Lineitem) (Order) (Lmeltem) ineite

Avoid redundant reads

MUNICH
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Create Locality to Reduce Communication

Horizontal Operator Function: “ [ \/

Partial - : :
* The invoked function will run partition | aggregation ~ FPartition & Fartial aggregation

Different operators in parallel T T

[ lineitem J [ lineitem J [ linertern J
* Data save can be huge when \/ I
table is big! @ @

Before Horizontal After Horizontal
operator fusion operator fusion

Single read, multi thread, multiple write

MUNICH
g@ RESEARCH
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Create Locality to Reduce Communication

Vertical Operator Fusion:

Input S3 Small table
objects i i i i
= Partition worker will transit = ] Big table
Partition A A el A }T
' roducer
to Join worker P q Fusion
I NN J operator
NI With a locall
" The fusion worker retain one Partitioned . parttion
. , . objects :
Partition doesn’t writes to S3 : \— | —7 .
: : 4 Transit
L Join " ___, Loading while
* Load the ready partition into Worker waiting
Local disk Join example of horizontal operator fusion version | Big table retain one

partition not writing to S3

Hide read latency inside the waiting time

Locality is much “easier” to create when you tailor query to functions
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Decompose, Decompose, and Decompose

o, SRR Carpriceley o 202 3 T 008 Decompose user logic into well-defined Lego blocks
FROM lineitem INNER JOIN orders ON 1 _orderkey = o orderkey [ | BlOCkS can be gl ued together d Iffe rently Iater

WHERE 1 commitdate < 1_receiptdate

AND 1_shipdate < 1_commitdate

AND 1_shipmode IN ('MAIL', 'SHIP') c
GROUP BY 1 shipmode, line_count
ORDER BY 1_shipmode

Planner
DuckDB

Distributed
o, —{ etz 2 —{ Rewrtor > o aueny oD
- Optimizer

I_O;:v_tirnlizpeld Physical Plan
ogical Plan Workflow with
multiple parallel
stages

l

{ Workflow }
a )

Query Engine Function Function

TREROW>>>

Acero

@ Velo>§

Logical
Plan

Table
Metadata

SQL

Parse Tree

Catalog

Decomposability allows for fine-grained resource allocation and increases elasticity
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Decompose, Decompose, and Decompose

Snowflake released Snowset dataset w/ statistics of real-world customer queries [1]
= Dataset contains statistics of 70M queries for 14-day period (21/02/2018—07/03/2018)

Several insights in [2] benchmarking Snowset: Datasets: — Snowset — TPC-H (SF=100) — TPC-DS (SF=100)

Most queries complete within few seconds ? J’/\k

* Median: 2.2 s; 2.8% of queries run > 1 min
* Implication: Cold-start must be < 100ms (<5%) ms 1s  1min 1h Oime 15 imin th 1a Tmly

Still most time & CPU is spent in long-running queries 1 M
O-

* Implication: Elasticity required to scale-out as needed
Most queries just touch a few MBs of data 5 | ims  1s imin 1n 1d 1m1y
« Median: 5.3 MB; 0.1% of queries read > 1TB uration log] CPU Time [log]

Density
o >
Density

Density * X
o
Density * X

1rlns 1s 1min 1h

. . . . . . e 'é" 'y 3 L
* Implication: Engine must be lightweight (compute efficient) @ [! Iz M\\
Still most of data is read by few data-hungry queries B oleLAN . Sl T [~ |
. . . . 1iKB 1MB 1GB 1TB 1PB 1KB 1MB 1GB 1TB 1PB
* Implication: Reducing data movement is necessary X
. . X
Database size per customer varies a lot but usually less 100 GBs X M i ‘
e Implication: N mm many different siz B O, ool
| plicatio eed to accommodate many d .e ent sizes 2 O e & e e 2 0t
Still most data belongs to few customers w/ DB sizes of TBs/PBs 0 Read Size [log] 0 Active DB Size [log]
° Implication: Need to consider biggest customers too Figure 1. Density function of the duration, CPU time, read bytes per query, as
well as database size per customer. Weight density function by query importance
[1] (2] (its value from the x-axis)

Extreme elasticity goal: queries running for a few sec. touching MBs & few hours touching PBs
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https://github.com/resource-disaggregation/snowset
https://vldb.org/pvldb/vol16/p1413-renen.pdf

GPU Functions Enabler of Broader Workloads

Myriad of GPU pre-processing libraries Pre-processing benefits from disaggregation

Google tf.data service

200
X mZ Colocated

-
o
=

e_-;’% Client, Clientm

rvidia DAL - B - BB |
o33 PadclsPacdia §

O PyTorch M M E 10
S A NS £

oooooooooo

Worker4 Workery Worker,
e Dispatcher
2 Colocate d

cuDF - GPU DataFrames tf.data service @ Disaggregated
@ g
€2 cuDF can now be used as a no-code-change accelerator for pandas! To
learn more, see here! Storage

[

-
1)
5}

cuDF

Normalized Cost Saving:
=
)

CUDF is a GPU DataFrame library for loading joining, aggregating, filtering, and otherwise manipulating data. cuDF

leverages libcudf, a blazing-fast C++/CUDA dataframe library and the Apache Arrow columnar format to provide a X . . o

GPU-accelerated pandas API Figure 5: tf.data service architecture. Solid lines correspond 1 i i
to the data path, dashed lines correspond to the control path. e M3

| Train Data ‘ | Model | |Integrtr;i:iate i Mset;gt:d E
Analytics Database Streaming |
%‘_‘,.. = MPI/RPC
Faa S laaS-based 3 _E FaaS-based Tl

Figure 1: IaaS vs. FaaS-based ML system architectures.

Cloud Infrastructure Service Towards Demystifying Serverless Machine Learning Training, Jiang et al.

Explore broader class of workloads as heterogeneity enters the space
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https://github.com/rapidsai/cudf
https://github.com/rapidsai/cudf
https://docs.nvidia.com/deeplearning/dali/user-guide/docs/index.html
https://docs.nvidia.com/deeplearning/dali/user-guide/docs/index.html
https://docs.nvidia.com/deeplearning/dali/user-guide/docs/index.html
https://dl.acm.org/doi/abs/10.1145/3620678.3624666

Expose the Workflow Abstraction

Expose the workflow abstraction as a native entity in the serverless computing service

= A workflow is a DAG of functions
= Provider is able to understand the relationships between workers (not possible w/ [aaS)

Function Function Function  Function How are Workflows Useful?
Driver | |Worker| |Worker| |Worker Workflows * Increases locality (co-location)
’ * Overlaps computation/communication

WorkflowsI Workflows are a white box Function Graph Workflow 17 Adapts to changes

' | ‘ * Permits higher function density
Function-as-a-service o

'v\/v — Overall better execution & deployment
A/ V4

VMs are a white box

\4

Cloud Infrastructure Service

Native workflows allows providers to “see” the relationship among workers
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Recipe to Achieve Short-lived Clouds

Good:

* Zero provisioning

e Autoscaling & Fast start-up times
* Fine-grained pricing

* Fine-grained resource allocation

- Exploit autoscaling and the Pareto curve

Bad:
* Limited execution time = State checkpointing
* Lack of lambda-to-lambda communication = Create locality

* Fixed memory-to-compute ratios > Decompose
» Restricted-to€PYs——> ML-on-FaaS

Ugly:
* No control of execution and deployment = Workflows as first-class citizens

Receipt toward achieving short-lived clouds
HuAwel | CENTER



Outline

e Serverless computing in Al-centric clouds
* Conclusion
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“It’s the Memory Stupid”, Richard Sites

RICHARD SITES

It's the Memory, Stupid!

Microprocessor Report

“l expect that over the coming
decades memory subsystem
design will be the only important
design issue for microprocessors.”
Richard Sites [MPR’96]

Memory Capacity Wall

Al and Memory Wall

10TB Baidu RecSys
10000 [ ]
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Figure 3: Memory as a percentage of rack TCO and power across different
hardware generations of Meta.

Memory has become the only issue in Datacenter design in Al era
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http://cva.stanford.edu/classes/cs99s/papers/architects_look_to_future.pdf
https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

Al-centric Supercomputer Clusters

NVIDIA DGX SuperPOD

Purpose-built for the unique demands of Al.

DGX A100 256 Pod

DGX H100 256 Pod

, NVLink

I1B HDR spine switches

... IB HDR leaf switches ...
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Dense Bisection Reduce
PFLOP/s [GB/s] [GB/s]
1DGX / 8 GPUs 2.5 2,400 150
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Google’s Cloud TPU v4 provides exaFLOPS-

il s R . . £) Google Cloud
scale ML with industry-leading efficiency

NVIDIA DGX H100

The gold standard for Al infrastructure.

"NVLink Fabric

160 GB/s (P100) | 300 GB/s (V100) | 600 GB/s (A100) | 900 GB/s (H100)

NVLink 2.0 NVIink 3.0 NVIink 4.0
25GT/s 50 GT/s 100 GT/s
8 4 2
25 GB/s 25 GB/s 25 GB/s
50 GB/s 50 GB/s 50 GB/s
6 (V100) 12 (A100) 18 (H100)

Table 1: Workloads by DNN model type (% TPUs used).
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Clusters of XPUs interconnect via high-speed networks
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https://www.nvidia.com/en-us/data-center/dgx-superpod/
https://cloud.google.com/blog/topics/systems/tpu-v4-enables-performance-energy-and-co2e-efficiency-gains
https://cloud.google.com/blog/topics/systems/tpu-v4-enables-performance-energy-and-co2e-efficiency-gains
https://arxiv.org/abs/2304.01433

From Compute- to Memory-centric Clouds

State-of-the-art WSC
oo [~“2000s-2020s]

O D Killer App
Web Search for a Planet

Technological assumptions
* Most of the cost goes to CPU
* Network fabrics are slow (100s-10s us)

* Accelerators (GPU/TPU) are optional

Cache CXL/UB/HBM

Bandwidth ain Elaioly Capacity

Flash Memory

HDD
Old Memory Hierarchy

Emerging WSC
[Post 2020s]

@ Killer App

) Generative Al for a planet

Technological assumptions
Most of the cost goes to Memory

Network fabrics are fast (100s ns)
Accelerators (GPU/TPU) are a necessity

GPU

HBM
Bandwidth Main Memory Capacity
CXL/UB Memory
Flash Memory
Viemonr
New Memory Hierarchy

New cloud design built around memory
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What are the Implications to Serverless Computing?

[~2000s-2020s]

[Post 2020s]
Cor Cor Cor Cor
e e e e
_m Us_n%@\
Agg Agg Agg Agg Agg Agg Agg Agg
r r r r r r r v
ToR ToR ToR ToR Tor |-X ToR ToR ToR
CXL
Mem ry Pool ry Pool
|
Disk !” Disk Disk Disk Disk Disk Disk Disk NPU NPU Flas Flas
| | | M M M
Me Me —_— =
CPU CPU | CPU CPU | CPU CPU CPU CPU NPU NPU | m m
Application Application Application “
Local memory e Remote memory over Remote memory over UB
TCP/IP or RoCE (global view)

Not clear how to build FaaS in this cloud...food for thought!
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Conclusion

e Serverless computing embodies the original goal of “pay-as-you-go” in the cloud

e Serverless computing exhibits unprecedented elasticity but a few key limitations

* Luckily most (if not old) limitations are not inherently fundamental

* Short-lived clouds builds (almost) all cloud applications around serverless computing
 Cookbook for achieving short-lived clouds:

Exploit autoscaling (per request)
Checkpointing state

Increase locality

Broader application space with heterogeneity
Expose workflows as first-class citizens
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Join Us!

Very competitive salary and welfare!
Change the world with your research!
e Work and collaborate with global top talents!

HUAWEI CLOUD ‘

Grow With Intelligence

+Al, Accelerate Digital Transformation and Innovation

HUAWEI CLOUD is a leading cloud service provider, which brings Huawei's 30-plus years of expertise together in ICT infrastructure
products and solutions. We are committed to providing reliable, secure, and cost-effective cloud services to empower applications,
harness the power of data, and help organizations of all sizes grow in today's intelligent world. HUAWEI CLOUD is also committed to
bringing affordable, effective, and reliable cloud and Al services through technological innovation.
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