X86 vs. ARM64:

An Investigation of Factors Influencing Serverless
Performance

Xinghan Chen, Ling-Hong Hung, Robert Cordingly, Wes Lloyd
kirito20@uw.edu

School of Engineering and Technology
University of Washington Tacoma

December 11,2023

24th ACM/IFIP International Middleware Conference
MIDDLEWARE 2023

B Background and Motivation
. Research Goals
Outline

Methodology
Results
Conclusions

Research Goals

e In this project, for executing serverless FaaS functions
on x86 and ARMé64 processors, we investigate
differences in:

o (RQ-1): CPU utilization metrics
o (RQ-2): Performance

o (RQ_3): Performance variance
o (RQ-4): Cost

e Background and Motivation

OUtli ne B Research Goals

e Methodology
e Results
e Conclusions

Switch to ARM64:

e Power efficiency
e Lowcost

X86 vs. ARM64 Stay on X86:

No migration cost

Widely supported
Performance optimization
Rely on platform specific
abilities

Computing architecture

Background and Motivation

OUtline Research Goals

Conclusions

Workloads

AWS Lambda us-west-2 (Oregon),
memory size: 3008MB(3GB) with 2 vCPU cores,
5GB ephemeral disk for I/O related tests

Short Name Function Name Description
linpack python_linpack Solve linear equations:
Ax=b
chacha20 openssl_encrypt_chacha20 Repeatedly perform openssl
encryption of 8MB file
n times
sqlite python_sglite_dump Execute n random SELECT

video-processing
json_dumps

ffmpeg_sebs_220_gif
python_json_dumps

queries on a 101000 SQLite
database

Convert PNG to GIF n times
JSON deserialization using

a downloaded JSON-encoded
string dataset

§ graph-pagerank python_sebs_501_pagerank PageRank implementation

% with igraph.

- graph-mst python_sebs_502_mst Minimum spanning tree
(MST) implementation with
igraph.

float python_float_operation Perform sin, cos, sqrt ops
chameleon python_chameleon Create HTML table of n rows
and M columns
graph-bfs python_sebs_503_bfs Breadth-first search (BFS)
implementation with igraph.
F | primenumber sysbench_cpu_prime Prime number generator
thread sysbench_thread Create thread, put locks and
g release thread
g | filehandle python_fopen Open and close file handles
E socket python_socket Open and close socket n times
v
readmemory sysbench_memory N sequential reads of 1GB
E‘ memory block
g | readwritememory python_malloc_write Allowcate 1IMByte of memory,
§ write 0x42 into it and release
readdisk fio_disk_io_random_read Test random read speed on a
g 1GB block

compression

python_sebs_311_compression Create a .gz file for a file

Using SAAFina Function:

le lines

and adding a couP!
response. For
1 as AWS 83, and

amework
4 onto the JSON
e, suct

mple importing the fr
AAF will be appende
red into @ databast

nction s s Si
ollected by S/

- chronous functions, thiS data could be St

asy
e tioved after the function s finished
Example Function:

tor import *

Using SAAFina fu
of code. Attributes &

from Inspecto
et myFunction{request)?
4 Tnitialize the Inspector and collect data:
inspector pector()
1nspecmr.mspedA\\()
4 Add @ "Hello World” message-
msvmur.aaamnnm("message", wHello "+ request(*name’] o)

4 Return attributes collected:

return inspector. finish0)

Ex
@mple Output JsON:

We utilize th
e Serverless Appli
colle : pplication A ,
ct metrics from serverless funCtionnalytlcs Framework to
S.

The at
tributes
more det collect can
talled d be cust
See the framenr - PHONS of (omized by changi
amework docume each variable ang nging which functi
the ions are
called. F
or

ntation f f
or ea unctior
chianguage, that collect then,

. please

ersion®; g.2,

ooty TSLR)

ncsodelr; g3,) (M) Process

s g 51727835, 0r @ 2.506H;",

e 0241c616-7845., ,
tUCny 8-48€2-9736.

-997dc1931d4

i "AWS Lambda",
1

. .
’) y’

more can collect
. ed by the Anal :
routing decisions by the PIFOXie?S/zer function and used to make

“CPUKrnDe Tt e
" 1ta%: wsgsn
CouTdlepetign; oot

Function

f some auibutes
the inspect

are ot needed, hen SO
jirun ol

) mathod Wil

Attributes Collected by Each

amount of data colect
o mocd tobe caled- 0%

oy hich unctons 1 <240
collct every 2KADUE

edis datemined.
would ke 10

The.
functions many M
methods.

T |
https'//qIthUb-COm/WllovduW/SS aVljllable here:

Core Attributes
Description

Fiold
theversion of the SAAF Framework.

version
aled.

The tanguage of the functir
4o runtime from when ™ ot inspectorinishi) 5
ch that the Inspector WaS nitalized n

Tang
e Thesevers e function s ntaized

ortrime The UniXERCX

inspectContainer(
Description

i fane does 10t 81E3Y X
een used before

Fiold
er assigned 109 <
e o (roasoned IO iinnas
onds snce Januan 11570 L epoch)

wid A urique idert

Whethera.

newcontainer
o the host booted 0.5

ime whet

smuptime

inspectCPU0
Description

Field

e modelname of the CPU

https://github.com/wlloyduw/SAAF

e Background and Motivation

OUtli ne e Research Goals

e Methodology

- Results

e Conclusions

Research
Question 1

How do Linux CPU utilization
measurements compare for
serverless functions run on x86
(Intel) vs. ARM64 (Graviton2)

processors?

We investigate changes in CPU
user mode time, CPU kernel
mode time, and CPU idle time.

ARMG64 vs. x86
CPU Utilization
Comparison

Percentage(%)

Percentage(%)

B CPUUser [CPUKernel CPU Idle
100

0
< 1% %[2|5 (&% %% 2(% &% ¢
3 3 |lo 3 |l]o 3 |lo 3 |o 3 |o 3 |o 3 |o 3
[e)] [e)] [e)} (o)} [e)] (o)} (o)} (o)} (@)]
S S a5 a5 S A 5 B S
read linpack | graph |[readwrite| float prime |chacha20| chame- | video
memory pagerank| memory number leon rocessin
100
50— 0 ——

x
2]
[e)]

x x
2] 02
(o)} (o))

98X

o |

yowe
powe

yowe

yowe

Q
=1
3
(=]
N

json compre- | sqglite

graph [filehandle| socket | thread |readdisk
dumps ssion

mst

11

Research
Question 2

How does serverless function runtime
compare on x86 (Intel) vs. ARM64
(Graviton2) processors?

Using runtime on x86 processors as a
baseline, we identify functions with
faster runtime on ARM, similar
runtime on ARM, and slower runtime
on ARM. In addition, we investigate
x86 vs. ARM64 runtime implications
when scaling up the work performed
by function instances

75

II I
o

Name

50
25
0

10 o 10
o e oy

(%) @bueyd asuewiopad 9gx sA NYY

Difference vs.

ARMG64 Function
Performance
Xx86

13

Research
Question 3

What is the difference in
performance variance of
serverless functions executed
on x86 (Intel) vs. ARM64
(Graviton2) processors?

We calculate and analyze the
coefficient of variation of
function runtime while scaling
the work of function instances
using forty distinct steps to
increase runtime.

® x86 @ arm64

8

Average CV (%)
of function
runtime

15

Function
runtime: change
in CV(%) over 40
steps

ARM Faster (ARM) ARM Faster (X86)

15
=——@— chameleon -0~ readdisk ==®-— readmemory ==@- primenumber
10
)
>
<
>
O
5
y%f R v,\m%/ﬁ\@’“\f MA
o 10 20 30
Step Step
ARM Similar (ARM) ARM Similar (X86)
15 —g— video-processing @ json_dumps w= socket =@ graph-pagerank
graph-mst @ compression —— float =@ graph-bfs
10
~
X
<
>
O
5
0
Step Step
is ARM Slower (ARM) ARM Slower (X86)
—@— |inpack chacha20 =@ thread =—®— filehandle sqlite,readwritememory
10
i)
>
<
>
O
5
0

Step

16

Research
Question 4

What is the cost difference in
hosting serverless functions on

x86 (Intel) vs. ARM64
(Graviton2) processors?

We compare the overall hosting
costs of 18 distinct functions
while scaling function runtime
across forty steps.

Estimated cost
of 400k function
calls:

x86 vs. ARM

Cost (USD)

. armé64 . x86

3,045
$3,000
2,7
$2,500
$2,000
1,528 1,557
$1,500 1,451
,344 1,362
1 263
1,171 1,055 1,165 1 168
$1,000 1,007
) | 394 | | II4 III I| II I
$0 II I I
Uy hs . Ty Sop, 785, Vig, %S0, Soc, s, 9rs. Cop Tos, 9ry, hs '& “r
Deq "Cb "@e eb‘, 9//1\ 6%%09 \So/; 004 NG 'h,b "eset . e,be ed (% e /,,,e%
e,,, @s ’bos 69@,-9 S¢Sy, o, 'bo,} "76
’77 on, 5‘/,79 g

18

30

ARM cost :

L] 10
difference (+/ - .
(o]
x 0 —
o '. . g 1 .
%) relative to :
C —
Qv
(0]
xX86 £
o =20
-t
(")}
o
(]
= -30
o
<
X
-40
-50
-60
///70 “6‘9/’ /7/-8‘3 /9/7 Q//(Ssaw"lde ;SOQ do ‘_ g/‘gﬂ/) j/‘ep/) O,b 9/‘60/7 /)e,be Gedd/s" I)’shlb@o
e, .. %g 'bps 69,_ 'S¢ Ss,b,) o /}0"76
My, S/ A,
00, '79 /3

Background and Motivation

OUtline Research Goals

Methodology
Results

- Conclusions

Conclusion Summary

We executed experiments using 18 functions on AWS to compare X86 vs.
ARMé64 FaaS

(RQ-1 - CPU Utilization): While most functions had similar CPU utilization
profiles across both architectures, some functions on ARMé4 had higher CPU
kernel mode utilization. These differences may help detect where x86 vs.
ARM64 performance differences are likely occur.

(RQ-2 - Performance): ARM64 can provide performance advantages for
serverless workloads. ARMé4 provided faster runtime than x86 for 7 of 18
functions. Four functions were more than 10% faster. Runtime improvements
appeared highly dependent on the nature of the workload.

—Average function runtime increased by 2.86% (18 functions x 40 timesteps).

21

Conclusion Summary - 2

(RQ-3 - Performance Variance): Functions run on x86 on AWS Lambda,
exhibit more than twice the runtime variance vs. ARM64 making x86 less
reliable for consistent performance.

(RQ-4 - Cost): ARM64 offers cost savings on AWS Lambda (15 of 18
tested serverless functions). Some of the cost savings are attributed to the
20% cost discount offered by the cloud provider for ARM64 processors.

— Average execution costs decreased by 18.4% (18 functions x 40 timesteps)

22

Thank You!

