
Efficiently Detecting Performance Changes
in FaaS Application Releases
Martin Grambow | Mobile Cloud Computing Research Group | Berlin | Dez 11 ’23
grambow@tu-berlin.de

Page 2 Martin Grambow | Efficiently Detecting Performance Changes in FaaS Application Releases

• Bug fixes

• New library versions

• New features

• …

There are code changes

V1 V2

How would you measure and quantify the performance change?

Page 3 Martin Grambow | Efficiently Detecting Performance Changes in FaaS Application Releases

Benchmarking ClientFaaS Cloud Frovider

The traditional benchmarking approach

V1
Artificial

Workload

Benchmarking ClientFaaS Cloud Frovider

V2
Artificial

Workload

Somewhere between +1.6% and +12.3%

Page 4 Martin Grambow | Efficiently Detecting Performance Changes in FaaS Application Releases

Idea: Run both function versions on the same instance

• Same compute unit

• Same environment

• Same random fluctuations

• …

This should reduce the confidence interval width and
lead to more accurate results!

Page 5 Martin Grambow | Efficiently Detecting Performance Changes in FaaS Application Releases

Idea: Merge source code into a wrapper function

{

}

Wrapper Function

Function_v1()

Function_v2()

• Execute both functions successively

Page 6 Martin Grambow | Efficiently Detecting Performance Changes in FaaS Application Releases

Idea: Merge source code into a wrapper function

{
 Boolean r = Random()
 if r {

 } else {

 }
}

Wrapper Function

Function_v1()

Function_v2()

Function_v2()

Function_v1()

• Execute both functions successively

• Either version 1 or version 2 first

Page 7 Martin Grambow | Efficiently Detecting Performance Changes in FaaS Application Releases

Idea: Merge source code into a wrapper function

{
 Boolean r = Random()
 if r {

 } else {

 }
}

Wrapper Function

Function_v1()

Function_v2()

Function_v2()

Function_v1()

Tim
e Stam

p
s

• Execute both functions successively

• Either version 1 or version 2 first

• Track the time before and after each call

Page 8 Martin Grambow | Efficiently Detecting Performance Changes in FaaS Application Releases

Idea: Merge source code into a wrapper function

do i times {
 Boolean r = Random()
 if r {

 } else {

 }
}

Wrapper Function

Function_v1()

Function_v2()

Function_v2()

Function_v1()

Tim
e Stam

p
s

• Execute both functions successively

• Either version 1 or version 2 first

• Track the time before and after each call

• Repeat the calls several times

Randomized Multiple Interleaved Trials (RMIT) [1]

[1] - Ali Abedi and Tim Brecht. 2017. Conducting Repeatable Experiments in Highly Variable Cloud Computing Environments. In Proc. of ICPE '17. ACM.

Page 9 Martin Grambow | Efficiently Detecting Performance Changes in FaaS Application Releases

Idea: Merge source code into a wrapper function

do i times {
 Boolean r = Random()
 if r {

 } else {

 }
}

Wrapper Function
do i times {
 Boolean r = Random()
 if r {

 } else {

 }
}

Wrapper Function
do i times {
 Boolean r = Random()
 if r {

 } else {

 }
}

Wrapper Function

Function_v1()

Function_v2()

Function_v2()

Function_v1()

Tim
e Stam

p
s

• Execute both functions successively

• Either version 1 or version 2 first

• Track the time before and after each call

• Repeat the calls several times [1]

• Deploy Wrapper function several times

[1] - Ali Abedi and Tim Brecht. 2017. Conducting Repeatable Experiments in Highly Variable Cloud Computing Environments. In Proc. of ICPE '17. ACM.

Page 10 Martin Grambow | Efficiently Detecting Performance Changes in FaaS Application Releases

Open source prototype: faasterBench

https://github.com/martingrambow/faasterBench

Function
Wrapper

Function_v1
Code

Function_v2
Code

Benchmark
Manager

Load Profile

Deployment
Artifact

Results

Deployment
Adapter

Deployment
Adapter

Deployed
Function

Analysis

- In-/Output

- Component

- FaaS Function

Page 11 Martin Grambow | Efficiently Detecting Performance Changes in FaaS Application Releases

Experiments on AWS and GCP

Somewhere between +1.6% and +12.3% Somewhere between +2.2% and +2.6%

V1

V2

Traditional faasterBench

Page 12 Martin Grambow | Efficiently Detecting Performance Changes in FaaS Application Releases

Findings and implications

• RMIT drastically reduces the confidence interval widths (see our paper)

• FaasterBench significantly improves the measurement results

• A good setup:

• 3 iterations

• 5 deployed wrapper functions

• 10 calls per wrapper function

• (150 measurement pairs in total)

Benchmarking Client

Artificial
Workload

5 functions
i = 3

10 calls

Page 13 Martin Grambow | Efficiently Detecting Performance Changes in FaaS Application Releases

Next steps

• Support more FaaS platforms

• Consider external calls

• Consider function parameters

Function(key) {

 values = db.getList(key);

 values.sort();

 db.setList(values);

}

Exclude call to
external service.

List with key
already sorted.

Page 14 Martin Grambow | Efficiently Detecting Performance Changes in FaaS Application Releases

Any Questions?

