
Leveraging Intra-Function Parallelism
in Serverless Machine Learning

Ionut Predoaia, Pedro García-López

December 2023

Stateful Machine Learning Algorithms

• As serverless functions are not directly network-addressable, they
cannot communicate with each other to share the state related to
an iterative machine learning algorithm

Shared State: ➤ the centroids in k-means clustering

 ➤ the gradients in logistic regression

• One must rely on a remote storage service for storing the shared
state => large overheads when running hundreds of iterations

 Can intra-function parallelism hide the access latency to the
remote storage by taking advantage of multiple vCPUs?

2

Portage to Serverless

3

• Lithops has been used for porting
k-means clustering and logistic
regression to serverless

• Lithops provides a Multiprocessing
module containing abstractions
that enable sharing state among
serverless functions

Adopting Intra-Function Parallelism

4

• The computation phase of the
algorithms is carried out by inner
workers, rather than workers

• The number of inner workers is
dictated by the number of vCPUs of a
serverless function

• A higher level of parallelism can be
achieved with a fewer number of
connection points to Redis =>
reduced synchronization overheads

Experimental Evaluations

5

Experiment 1 - Description

• The k-means algorithm has been executed with a data set of 8GB and
with a growing number of serverless functions, from 50 up to 400

• Each serverless function had 6 vCPUs allocated

• In the first (baseline) instance, the k-means algorithm was executed
without employing intra-function parallelism

• Then the k-means algorithm was executed by employing intra-function
parallelism, by using 2 up to 6 vCPUs of each serverless function

6

Experimental Evaluations
Experiment 1 - Results

Experimental Evaluations

7

Experiment 2 - Description

• One may argue that the previous experiment does not carry out a fair
evaluation because different levels of parallelism were achieved

• This experiment aims to evaluate the performance improvement
obtained when leveraging intra-function parallelism, whilst maintaining
the same level of parallelism

• For example, it is to be determined whether a better performance can
be obtained when invoking 50 serverless functions, each with 6 vCPUs,
that leverage intra-function parallelism, compared to when invoking
300 serverless functions, each with only 1 vCPU

Experimental Evaluations

8

Experiment 2 - Results

• As a baseline, the algorithms were executed with 300 workers, where
each serverless function had 1 vCPU allocated with 1500MB of memory

• The memory of the serverless functions has been proportionally
increased for each additional vCPU

Summary

• We ported two stateful machine learning algorithms to serverless,
k-means clustering and logistic regression, and then adopted
intra-function parallelism

• Improved performances of up to 68% have been achieved by
leveraging intra-function parallelism

• We demonstrated that from a performance perspective, it is
preferable to execute a smaller number of multiple-vCPUs workers
than a larger number of single-vCPU workers, due to decreased
synchronization overheads

9

10

Experimental Evaluations

11

Configuration Setup

Parameter Value

Resources Region eu-west2 (Europe - London)

Redis Node Instance Type r5.large (memory optimized - 2 vCPU, 16GB RAM)

Client Machine Instance Type t2.2xlarge (general purpose - 8 vCPU, 32GB RAM)

AWS Lambda Timeout 15 minutes

• All experiments have been conducted in AWS in the same VPC

• The serverless functions are running via AWS Lambda

• The data sets are stored in Amazon S3

Limitations

• The amount of memory determines the number of vCPUs available
to a serverless function => one may want to employ intra-function
parallelism to leverage the multiple vCPUs, but may not need the
additional amount of memory which brings additional costs

• AWS Lambda does not provide shared memory for processes,
therefore we had to rely on pipes for sending the output of the
inner workers to the (parent) workers => large transfer overheads
may be induced

12

	Slide 1
	Slide 2: Stateful Machine Learning Algorithms
	Slide 3: Portage to Serverless
	Slide 4: Adopting Intra-Function Parallelism
	Slide 5: Experimental Evaluations
	Slide 6: Experimental Evaluations
	Slide 7: Experimental Evaluations
	Slide 8: Experimental Evaluations
	Slide 9: Summary
	Slide 10
	Slide 11: Experimental Evaluations
	Slide 12: Limitations

