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Model Inference - Motivation

Introduction

@ Up to 90 % of the infrastructure cost for developing and
running a deep learning application is spent on inference.

@ Needs: scalable, guarantee high system goodput, and
maximize resource utilization.

o Intention: Set the foundations for model inference serving
in serverless computing environments
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Objective: analyse the factors independently and together to
build up a generalizable optimization model to assist in

scheduling decisions

Introduction

Use case: Image classification inference because its many
applications such as e-comerce and retail (Amazon or
Pinterest), social media such as instagram, autonomous
vehicles, medical image analysis etc
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Background

Types of inference according to deadline guarantees.
Background o “Hard” Real-time Inference

e “Soft” Real-time

@ Relaxed Inference

o Best-effort Inference
Equipment: TPU, GPU, CPU, etc.

Our study case: 1 GPU (NVIDIA A100 with 40 GB of VRAM),
“Soft” Real-time and Relaxed Inference.

7/20



Methodology

e Methodology
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Methodology

@ Selection of an image classification model: EfficienNet-BO
@ Creation of dummy images with different input sizes

Methodology @ Measuring inference times (repeated) over the different
input sizes and mini-batch sizes looking for dependencies
(for later on defining functions)

o Hardware monitoring * (164 features including network
bandwidth, disk read/write bandwidth and counters, CPU
parameters, memory utilization, GPU (pynvml and torch):
temperature, memory fragmentation, etc.)

@ Proposition of mathematical models for the optimization
of the inference process

Ihttps://github.com/cirquit/py-hardware-monitor
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Results
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Results

00425,
00100

00375

Inference Tme (seconcs)

00300

0027

00250

Input Size vs. Memory Usage for Different Mini-batch Sizes

o Minibatch size 1

o Minibateh size 4
o Minibatch size 8
o Minibatch size 16.
- Minibatch size 32
- Minbatch size 64

00 1000

300
Input size

Memory usage using different image input sizes and mini-batch sizes

12/20



Inference Time without warm-up

1000 "
=
w00
600 Lo
f .
3
o .
L——
gsese "
oo

Results

[ 200 00 600 800 1000
Mini-batch size

Inference Time with 1 warm-up time per mini-batch size

— Regression Line

f(x) =5.53x + 1

] 200 400 500 800 1000
Mini-batch size

Inference time using different mini-batch sizes without considering
warm-up (above) and considering warm-up (below) with fixed input
size = 224

13/20



Results

Top 15 Feature Importances

Features
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Optimization definitions

Decision variables:
@ t;: The number of times GPU; is used (an integer).
@ mbs;: The mini-batch size chosen for GPU; (an integer).
@ Ng: The number of GPUs to be used (an integer)

The constants:

Results @ T: The total available time. This should not be exceeded by any of
the GPUs, given that they work in parallel (a decimal number).

@ N: The number of images that need to be processed in total in the
given time (an integer).
@ NGPU: The maximum number of GPUs available (an integer)
@ M;: The maximum number of times GPU; can be used (a constant)
@ Size;: The images’ input size for GPU;
The functions:
@ L;: Latency per mbs; for GPU;
@ W;: Warm-up time for GPU;
@ MB;: The maximum mini-batch size for GPU; (a function of Size;).
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Results

Optimization model - “Soft” real-time inference

s.t.

min Ng

Maximumi(Wi(mbsi) +t- Li(mbsi)) <T

Dl(ti+1)-mbs; > N
i (1)
mbs; < MB; for all i

1<
0<t <M; foralli
1 < Ng < NGPU
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Results

Optimization model - relaxed inference

s.t.

max NGPUXZ (ti+1) - mbs;

MaX|muml( i(mbs;) + ¢t - Li(mbs;)) < T (2)
1 < mbs; < MB; Vi
0<ti<M; Vi
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e Future Work
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Conclusions and Future Work

Conclusion: we have established a foundation for exploring the
optimal way of serving Al models for image inference serving.
Future work:

S @ Optimal Mini-Batch Determination

o Resource Management and Load Times

@ Concurrency and Cost-Energy Limits

@ Versatility and Heterogeneous Serving

@ Resolution of the optimization models

o Adaptation and Integration
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