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Advantages of serverless 

• no need for servers’ management

• automated scaling of services

• pricing based on actual resource usage
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The problem

The developers need to write the code for interactions between the 
application logic and storage. 

As a result, the approach:

• increases complexity

• slows down the development process

• hampers modularity and reuse
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Nubes and its goals

Nubes is a novel programming model for 
stateful serverless functions.

The goal is to:

• accelerate the development process

• introduce low overhead in terms of 
latency
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Serverless (cloud) environment

Objects as basic building blocks

Objects

State
Methods

Methods
Methods

Client program(s)
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Storage Service

Separate table for each type

Nubes code translation & generation 

Object types

- email: String

- password: String

- name: String

+ GetTypeName(): String

+ VerifyPassword(): bool

+ GetReservations(): 
List<reservations>

User

- email: String

- password: String

- name: String

+ GetTypeName(): String

+ VerifyPassword(): bool

+ GetReservations(): 
List<reservations>

User

- email: String

- password: String

- name: String

+ GetTypeName(): String

+ VerifyPassword(): bool

+ GetReservations(): 
List<reservations>

User

Email Password Name

kinga@gmail.com dxbOLdPac4jV1 Kinga

marco@mail.com aMlYDmnejvZL2 Marco

luca@polimi.it vPRJq8xLJ7YJ6 Luca
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Serverless functions

Nubes code translation & generation 

- email: String

- password: String

- name: String

+ GetTypeName(): String

+ VerifyPassword(): bool

+ GetReservations(): 
List<reservations>

User

- email: String

- password: String

- name: String

+ GetTypeName(): String

+ VerifyPassword(): bool

+ GetReservations(): 
List<reservations>

User

- email: String

- password: String

- name: String

+ GetTypeName(): String

+ VerifyPassword(): bool

+ GetReservations(): 
List<reservations>

User

UserVerifyPassword
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Nubes code translation & generation 
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User

Add storage 
interactions
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Deployment files

Clients' library

Nubes code translation & generation 
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- password: String
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+ GetTypeName(): String

+ VerifyPassword(): bool

+ GetReservations(): 
List<reservations>
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+ GetTypeName(): String

+ VerifyPassword(): bool

+ GetReservations(): 
List<reservations>

User
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+ VerifyPassword(): bool

+ GetReservations(): 
List<reservations>

User
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List<reservations>
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Add storage 
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Object types’ definitions

type User struct {

Id string

FirstName string

LastName string

Email string

Password string

}

func (User) GetTypeName() string {

return "User"

}



16

Custom Ids

type User struct {

FirstName string

LastName string

Email string `nubes:"id"`

Password string

}

func (User) GetTypeName() string {

return "User"

}
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Objects lifecycle

Unitialized Initialized Deleted
Export Delete

Load
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Relationships

User

User

User
User
Order

Preferred

Payment

Method

Has one

Has many



21

Relationships

type User struct {

FirstName string

LastName string

Email string `nubes:"id"`

Password string

Shops lib.BiRefList[Shop]
`nubes:"hasMany-Owners"`

Orders lib.RefList[Order]

}
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Evaluation

Nubes was compared with standard methodology for developing stateful 
serverless applications: manual writing of interactions with the storage

Evaluation aimed at answering two research questions:

1. Are applications developed with Nubes simpler than equivalent baseline 
applications?

2. Does developing applications with Nubes incur any significant runtime 
performance overhead with respect to applicable baseline?
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Experimental setup

Three implementations of server-side application for hotel booking service:

1. Nubes
the proposed approach 

2. SSF
the traditional approach, normalized storage

3. SSF-custom
the traditional approach, storage schema optimized for task at hand

Use cases were derived from DeathStarBench (Yu Gan et al., 2019), an open-
source benchmark suite for microservices applications.
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Effectiveness of the programming model

System
Lines of code 

(written)
Lines of code 
(generated)

Lines of code 
(total)

SSF 1020 0 1020

Nubes 368 603 972

Concerns that were removed with Nubes:
• storage initialization
• read and write interactions with storage
• serverless functions handlers
• deployment files

The baseline system requires 2.75 times more lines of code than Nubes.
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Discussion

Are applications developed with Nubes simpler than equivalent baseline 
applications?

Nubes:

• significantly reduces the amount of code to be written as well as its 
complexity

• enables a rapid migration to different cloud environments in the future
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Experimental setup

Performance metric: the execution time of each serverless function.

Task Features tested

register-user export

delete-user delete

set-hotel-rate update

login object method

get-hotels get all 1:n rel.

recommend get inverse 1:n rel.

reserve export, update, n:m rel.

get-user-reservations get all 1:n rel.

As a metric of performance, the execution time of each serverless 
function involved in the application was measured.

• 50k users
• 5 cities
• 500 hotels
• 12.5k rooms
• 250k reservations
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Performance evaluation

• the results of the three workloads configurations are nearly identical

• on average, the overhead introduced by Nubes is within 10% of the median 
duration of the SSF baseline

• the maximum overhead is about 23% of the median w.r.t. SSF-custom 
system (task: retrieval of hotels in a city)

• the mean overhead considering all tasks w.r.t. SSF-custom is below 15%
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Discussion

Does developing applications with Nubes incur any significant runtime 
performance overhead with respect to applicable baseline?

• Nubes, is a general framework, thus it cannot provide custom, task-specific 
optimizations:

o this kind of optimizations may bring advantages in some use cases, but 
they lead to less general and reusable components

• developers may adopt Nubes to speed up the development process and then 
manually optimize only the required parts (if any)

• Nubes preserves the typical scalability of serverless solutions
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Conclusions

Nubes:

• promotes modularity and reusability through the usage of object-oriented 
programming concepts

• accelerates and simplifies the development process

• The overhead that is introduced is limited w.r.t. custom implementations 
that sacrifice generality and reusability for performance

• preserves scalability of serverless solutions

In the future, we plan to extend Nubes with mechanisms that synchronize 
concurrent access to the object’s state.
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