
Nubes: Object-Oriented Programming
for Stateful Serverless Functions

Kinga Marek, Luca De Martini, Alessandro Margara

2

Function as a Service

AWS Lambda Azure function
Google Cloud

function

3

Advantages of serverless

• no need for servers’ management

• automated scaling of services

• pricing based on actual resource usage

4

Function as a Service

Serverless (cloud) environmentClient program(s)

Methods
MethodsServerless
functions

5

Function as a Service

Serverless (cloud) environmentClient program(s)

Methods
MethodsServerless
functions

Database

6

The problem

The developers need to write the code for interactions between the
application logic and storage.

As a result, the approach:

• increases complexity

• slows down the development process

• hampers modularity and reuse

7

Nubes and its goals

Nubes is a novel programming model for
stateful serverless functions.

The goal is to:

• accelerate the development process

• introduce low overhead in terms of
latency

8

Serverless (cloud) environment

Objects as basic building blocks

Objects

State
Methods

Methods
Methods

Client program(s)

9

Storage Service

Separate table for each type

Nubes code translation & generation

Object types

- email: String

- password: String

- name: String

+ GetTypeName(): String

+ VerifyPassword(): bool

+ GetReservations():
List<reservations>

User

- email: String

- password: String

- name: String

+ GetTypeName(): String

+ VerifyPassword(): bool

+ GetReservations():
List<reservations>

User

- email: String

- password: String

- name: String

+ GetTypeName(): String

+ VerifyPassword(): bool

+ GetReservations():
List<reservations>

User

Email Password Name

kinga@gmail.com dxbOLdPac4jV1 Kinga

marco@mail.com aMlYDmnejvZL2 Marco

luca@polimi.it vPRJq8xLJ7YJ6 Luca

10

Serverless functions

Nubes code translation & generation

- email: String

- password: String

- name: String

+ GetTypeName(): String

+ VerifyPassword(): bool

+ GetReservations():
List<reservations>

User

- email: String

- password: String

- name: String

+ GetTypeName(): String

+ VerifyPassword(): bool

+ GetReservations():
List<reservations>

User

- email: String

- password: String

- name: String

+ GetTypeName(): String

+ VerifyPassword(): bool

+ GetReservations():
List<reservations>

User

UserVerifyPassword

Storage Service

Separate table for each type

Object types

- email: String

- password: String

- name: String

+ GetTypeName(): String

+ VerifyPassword(): bool

+ GetReservations():
List<reservations>

User

- email: String

- password: String

- name: String

+ GetTypeName(): String

+ VerifyPassword(): bool

+ GetReservations():
List<reservations>

User

- email: String

- password: String

- name: String

+ GetTypeName(): String

+ VerifyPassword(): bool

+ GetReservations():
List<reservations>

User

11

Nubes code translation & generation

- email: String

- password: String

- name: String

+ GetTypeName(): String

+ VerifyPassword(): bool

+ GetReservations():
List<reservations>

User

- email: String

- password: String

- name: String

+ GetTypeName(): String

+ VerifyPassword(): bool

+ GetReservations():
List<reservations>

User

- email: String

- password: String

- name: String

+ GetTypeName(): String

+ VerifyPassword(): bool

+ GetReservations():
List<reservations>

User

Object types

- email: String

- password: String

- name: String

+ GetTypeName(): String

+ VerifyPassword(): bool

+ GetReservations():
List<reservations>

User

- email: String

- password: String

- name: String

+ GetTypeName(): String

+ VerifyPassword(): bool

+ GetReservations():
List<reservations>

User

- email: String

- password: String

- name: String

+ GetTypeName(): String

+ VerifyPassword(): bool

+ GetReservations():
List<reservations>

User

Add storage
interactions

12

Deployment files

Clients' library

Nubes code translation & generation

- email: String

- password: String

- name: String

+ GetTypeName(): String

+ VerifyPassword(): bool

+ GetReservations():
List<reservations>

User

- email: String

- password: String

- name: String

+ GetTypeName(): String

+ VerifyPassword(): bool

+ GetReservations():
List<reservations>

User

- email: String

- password: String

- name: String

+ GetTypeName(): String

+ VerifyPassword(): bool

+ GetReservations():
List<reservations>

User

Object types

- email: String

- password: String

- name: String

+ GetTypeName(): String

+ VerifyPassword(): bool

+ GetReservations():
List<reservations>

User

- email: String

- password: String

- name: String

+ GetTypeName(): String

+ VerifyPassword(): bool

+ GetReservations():
List<reservations>

User

- email: String

- password: String

- name: String

+ GetTypeName(): String

+ VerifyPassword(): bool

+ GetReservations():
List<reservations>

User

Add storage
interactions

15

Object types’ definitions

type User struct {

Id string

FirstName string

LastName string

Email string

Password string

}

func (User) GetTypeName() string {

return "User"

}

16

Custom Ids

type User struct {

FirstName string

LastName string

Email string `nubes:"id"`

Password string

}

func (User) GetTypeName() string {

return "User"

}

18

Objects lifecycle

Unitialized Initialized Deleted
Export Delete

Load

19

Relationships

User

User

User
User
Order

Preferred

Payment

Method

Has one

Has many

21

Relationships

type User struct {

FirstName string

LastName string

Email string `nubes:"id"`

Password string

Shops lib.BiRefList[Shop]
`nubes:"hasMany-Owners"`

Orders lib.RefList[Order]

}

22

Evaluation

Nubes was compared with standard methodology for developing stateful
serverless applications: manual writing of interactions with the storage

Evaluation aimed at answering two research questions:

1. Are applications developed with Nubes simpler than equivalent baseline
applications?

2. Does developing applications with Nubes incur any significant runtime
performance overhead with respect to applicable baseline?

23

Experimental setup

Three implementations of server-side application for hotel booking service:

1. Nubes
the proposed approach

2. SSF
the traditional approach, normalized storage

3. SSF-custom
the traditional approach, storage schema optimized for task at hand

Use cases were derived from DeathStarBench (Yu Gan et al., 2019), an open-
source benchmark suite for microservices applications.

24

Effectiveness of the programming model

System
Lines of code

(written)
Lines of code
(generated)

Lines of code
(total)

SSF 1020 0 1020

Nubes 368 603 972

Concerns that were removed with Nubes:
• storage initialization
• read and write interactions with storage
• serverless functions handlers
• deployment files

The baseline system requires 2.75 times more lines of code than Nubes.

25

Discussion

Are applications developed with Nubes simpler than equivalent baseline
applications?

Nubes:

• significantly reduces the amount of code to be written as well as its
complexity

• enables a rapid migration to different cloud environments in the future

26

Experimental setup

Performance metric: the execution time of each serverless function.

Task Features tested

register-user export

delete-user delete

set-hotel-rate update

login object method

get-hotels get all 1:n rel.

recommend get inverse 1:n rel.

reserve export, update, n:m rel.

get-user-reservations get all 1:n rel.

As a metric of performance, the execution time of each serverless
function involved in the application was measured.

• 50k users
• 5 cities
• 500 hotels
• 12.5k rooms
• 250k reservations

27

Performance evaluation

• the results of the three workloads configurations are nearly identical

• on average, the overhead introduced by Nubes is within 10% of the median
duration of the SSF baseline

• the maximum overhead is about 23% of the median w.r.t. SSF-custom
system (task: retrieval of hotels in a city)

• the mean overhead considering all tasks w.r.t. SSF-custom is below 15%

28

Discussion

Does developing applications with Nubes incur any significant runtime
performance overhead with respect to applicable baseline?

• Nubes, is a general framework, thus it cannot provide custom, task-specific
optimizations:

o this kind of optimizations may bring advantages in some use cases, but
they lead to less general and reusable components

• developers may adopt Nubes to speed up the development process and then
manually optimize only the required parts (if any)

• Nubes preserves the typical scalability of serverless solutions

29

Conclusions

Nubes:

• promotes modularity and reusability through the usage of object-oriented
programming concepts

• accelerates and simplifies the development process

• The overhead that is introduced is limited w.r.t. custom implementations
that sacrifice generality and reusability for performance

• preserves scalability of serverless solutions

In the future, we plan to extend Nubes with mechanisms that synchronize
concurrent access to the object’s state.

	Default Section
	Diapositiva 1: Nubes: Object-Oriented Programming for Stateful Serverless Functions Kinga Marek, Luca De Martini, Alessandro Margara
	Diapositiva 2: Function as a Service
	Diapositiva 3: Advantages of serverless
	Diapositiva 4: Function as a Service
	Diapositiva 5: Function as a Service
	Diapositiva 6: The problem
	Diapositiva 7: Nubes and its goals
	Diapositiva 8: Objects as basic building blocks
	Diapositiva 9: Nubes code translation & generation
	Diapositiva 10: Nubes code translation & generation
	Diapositiva 11: Nubes code translation & generation
	Diapositiva 12: Nubes code translation & generation
	Diapositiva 15: Object types’ definitions
	Diapositiva 16: Custom Ids
	Diapositiva 18: Objects lifecycle
	Diapositiva 19: Relationships
	Diapositiva 21: Relationships
	Diapositiva 22: Evaluation
	Diapositiva 23: Experimental setup
	Diapositiva 24: Effectiveness of the programming model
	Diapositiva 25: Discussion
	Diapositiva 26: Experimental setup
	Diapositiva 27: Performance evaluation
	Diapositiva 28: Discussion
	Diapositiva 29: Conclusions

