
Federated FaaS for Flexible Scientific Computing

Kyle Chard

Joint work with Ryan Chard, Yadu Babuji, Zhuozhao Li, Tyler Skluzacek, Anna Woodard, Ben
Blaiszik, Ben Galewsky, Josh Bryan, Daniel S. Katz, and Ian Foster

2

The scientific computing ecosystem is rapidly evolving

Resources

▪ Hardware specialization
(e.g., architectures, accelerators)

▪ Specialization leads to
distribution

Workloads

▪ Interactive, real-time
workloads

▪ Machine learning training
and inference

▪ Components may best be
executed in different places

Users

▪ Diverse backgrounds and
expertise

▪ Different user interfaces
(e.g., notebooks)

3

FaaS as offered by cloud providers

Cloud provider 1

Cloud provider 2

• Single provider, single
location to submit and
manage tasks

• Homogenous execution
environment

• Transparent and elastic
execution (of even very
small tasks)

• Integrated with cloud
provider data
management

4

We still want
• Single interface

• Homogenous execution
environment

• Transparent and elastic
execution

• Integrated with data
management

FaaS as an interface to the scientific computing ecosystem?

5

funcX: managed and federated FaaS

• Cloud-hosted service for managing
compute

• Register and share FaaS compute
endpoints

• Register and share Python functions

• Reliable, scalable, secure function
execution

Try funcx on Binder
https://funcx.org

You request a
function be

executed on
endpoint A and B

A A

1

3

2

funcX manages the reliable
and secure execution on

those endpoints

funcX either returns
results when the
function completes
or stores them in the
cloud until requested

6

FuncX: a federated function serving ecosystem for research

Endpoints:
– User-deployed and managed

– Dynamically provision resources, deploy
containers, and execute functions

– Exploit local architecture/accelerators

funcX Service:
– Single reliable cloud interface

– Register and share endpoints

– Register, share, run functions

Choose where to execute functions
– Closest, cheapest, fastest, accelerators …

7

Common use case 1: fire-and-forget execution

Executing a bag of tasks (e.g., running simulations with different parameters, executing ML inferences)
on one or more remote computers directly from your environment (e.g., Jupyter on your laptop)

Advantages:

▪ Fire-and-forget execution managed by funcX (tasks/results cached until endpoint/client online)
▪ Portability across different systems (optionally making use of specialized hardware)
▪ Elastic scaling to provision resources as needed (from HPC and cloud systems)

Examples:

Screening billions of molecules to identify potential COVID-19 therapeutics.
Computing molecule features, running ML inference, selecting top results.
(National Virtual Biotechnology Laboratory, arXiv:2006.02431)

ML-based drug screening Distributed statistical inference for HEP

Wrapping a C-based statistical inference tool as a function so scientists can
easily fit multiple different hypotheses for new physics signatures (signals).
(Feickert et al., arXiv:2103.02182)

8

Common use case 2: automated analysis of data

Constructing and running automated analysis pipelines that include data processing steps that need to
be executed in different locations (e.g., near an instrument, in a data center, on specialized hardware)

Advantages:

▪ Automatically processes data as they are acquired (event- and workflow-based)
▪ Integrates with data movement and other actions (both human and machine)
▪ Execute functions across the computing continuum (close to data, on specialized hardware, etc.)

Examples:

Near-real-time analysis of data acquired from the Advanced Photon Source
to solve protein structures at room temperature.
(Joachimiak et al., https://doi.org/10.1073/pnas.2100170118)

Using DNNs to estimate probability density function by training DNN with
real-time data (e.g., on Cerebras, DGX, SambaNova) and inference at the edge
(Liu, Thayar, et al.)

Serial Crystallography Remote training of DNNs

https://doi.org/10.1073/pnas.2100170118

9

Common use case 3: funcX as a platform

Building new applications and services that seamlessly execute application components or user
workloads on remote resources

Advantages:

▪ Robust, secure, and scalable platform for managing parallel and distributed execution across a
federated ecosystem of computing endpoints

▪ Simple cloud-based API and Python SDK for integration

Examples:

A hosted service that enables researchers to find, share, publish, and run machine
learning models and discover training data for science. funcX enables remote inference
on specialized resources.
(Chard et al. https://arxiv.org/pdf/1811.11213)

The Data and Learning Hub for Science (DLHub) Xtract: automated bulk metadata extraction

An automated and scalable system for bulk metadata extraction from large,
distributed research data repositories. Xtract orchestrates the application of
metadata extractors to groups of files, using funcX to dispatch extractors to data.
(Skluzacek et al. https://doi.org/10.1145/3431379.3460636)

https://doi.org/10.1145/3431379.3460636

10

231,000
registered functions

17.2 million
function invocations

3683
registered endpoints

335
users

121s
average function

runtime

funcX usage is growing rapidly

https://funcx.org

https://funcx.org/binder

