
Netherite: Efficient Execution of
Serverless Workflows
Sebastian Burckhardt
Microsoft Research

in collaboration with Badrish Chandramouli (MSR), Chris Gillum (Microsoft
Azure), David Justo (Microsoft Azure), Konstantinos Kallas (UPenn), Connor
McMahon (Microsoft Azure), Christopher Meiklejohn (CMU), Zhu Xiangfeng
(UW)

WOSCx June 16, 2022

Agenda Motivation
Using serverless workflows (e.g. Durable Functions)
for composition and coordination of services

Netherite Architecture
Efficient execution of workflows on an elastic cluster

Serverless is about Developer Productivity

� Simplify development of cloud services
by delegating server management
� to commercial provider (e.g. Azure, AWS, Google, IBM ...)
� or just to lower layer of the stack (e.g. Kubernetes + KEDA scaler)

3

FaaS

composed
serverless service

External
Service 1

External
Service 2

Storage

FaaS is not just another component.

With FaaS, you can build a serverless service
entirely from serverless components:

It's the glue!

autoscale &
pay for use

autoscale &
pay for use

autoscale &
pay for use

autoscale &
pay for use

Problem: Explicit State and Synchronization Are Hard

FaaS

composed stateful
serverless service

External
Service 1

External
Service 2

Storage

� C1 -- Execution Progress
� What if function fails in the middle of execution?
� What if function times out?

� C2 -- Persistent Application State
� Functions do not have local storage
� All persistent state needs to be saved explicitly

� C3 -- Exactly-Once Processing
� Functions may process event multiple times
� Developers must make functions idempotent

� C4 -- Concurrency
� Synchronization via storage is difficult (e.g. optimistic

e-tags, pessimistic leases)

Solution: evolve the programming model

FaaS

External
Service 1

External
Service 2

Storage

Workflow
Compute

External
Service 1

External
Service 2

Stateless FaaS FaaS + Storage + Services Serverless Workflows
state
management,
synchronization

none explicit
(via storage)

implicit
(programming model)

Workflow
Storage

FaaS

Serverless Workflows

External
Service 1

External
Service 2

Storage

FaaS

External
Service 1

External
Service 2

Storage

Workflow Compute

External
Service 1

External
Service 2

We anticipate that the
majority of cloud services
will be built in this way in
the future.

Workflow
Storage

Two Research Questions

� How to express workflows?

� How to execute workflows?

How to express workflows?
FaaS + Storage Serverless Workflows

Example:
FaaS w/ storage triggers

Examples:
Temporal Workflows
Azure Durable Functions

Declarative Workflows-as-code

Examples:
AWS step functions
Azure Logic Apps

workflow start_trial()
{

await timer(30d);
if (!this.was_cancelled)
{

if (await charge_money())
{
await extend();
return;

}
}
await cancelsubscription();

}

{
"StartAt": "Hello",
"States": {
"Hello": {
"Type": "Pass",
"Next": "World"

},
"World": {
"Type": "Pass",
"Result": "World",
"End": true

}
}

}

Queue
q1

Queue
q2

print “Hello”
q2.enqueue()

print “World”

trigger trigger

How to express workflows?

Example:
FaaS w/ storage triggers

Examples:
Temporal Workflows
Azure Durable Functions

Declarative Workflows-as-code

Examples:
AWS step functions
Azure Logic Apps

workflow start_trial()
{

await timer(30d);
if (!this.was_cancelled)
{

if (await charge_money())
{
await extend();
return;

}
}
await cancelsubscription();

}

{
"StartAt": "Hello",
"States": {
"Hello": {
"Type": "Pass",
"Next": "World"

},
"World": {
"Type": "Pass",
"Result": "World",
"End": true

}
}

}

Queue
q1

Queue
q2

print “Hello”
q2.enqueue()

print “World”

trigger trigger

FaaS + Storage Serverless Workflows

How to express workflows?

Example:
FaaS w/ storage triggers

Examples:
Azure Durable Functions
Temporal Workflows
Ray

Declarative Workflows-as-code

Examples:
AWS step functions
Azure Logic Apps

workflow start_trial()
{

await timer(days: 30);
if (!this.was_cancelled)
{

if (await charge_money())
{
await extend();
return;

}
}
await cancelsubscription();

}

{
"StartAt": "Hello",
"States": {
"Hello": {
"Type": "Pass",
"Next": "World"

},
"World": {
"Type": "Pass",
"Result": "World",
"End": true

}
}

}

Queue
q1

Queue
q2

print “Hello”
q2.enqueue()

print “World”

trigger trigger

FaaS + Storage Serverless Workflows

Two Research Questions

� How to express workflows?

� How to execute workflows?

Challenges:

- Fault tolerance, distribution, and elastic scale
- Continuous persistence without excessive storage traffic

Our approach
Durable Functions SDKs
Feature-rich polyglot workflow-as-code

Netherite Backend
Asynchronously communicating partitions with
persistence pipelining

Message-Passing Model
Simple Intermediate representation

� How to execute workflows?

� How to express workflows? Translate into

Execute on

Original DF Implementation vs. Netherite

Throughput bottleneck:
too many storage accesses

Original DF Implementation vs. Netherite

Partitions are largely autonomous
Communicate via asynchronous ordered channels
(no need for distributed 2-phase commit)

Partition Persistence Optimizations

� Commit log
� commit many transitions with a single storage write (cf. group commit)

� Persistence Pipelining
� Allow local dependency on uncommitted transitions (cf. early lock release)
� Local only: outgoing messages wait for commit

� FASTER Key-Value Store enables
� Larger-than-memory instance store
� LRU cache for instance states
� Asynchronous, incremental checkpointing
� Instant Recovery (lazy loading)

Clients & other
partitions

Improved Throughput (Scalability)

Status

Microsoft Product

� Azure Durable Functions
widely used, strong growth

� Netherite Execution Engine
currently in public preview

Research Publications

� Early preprint
ArXiV Februrary 2021

� DF semantics paper
OOPSLA 2021

� Netherite paper
VLDB 2022

© Copyright Microsoft Corporation. All rights reserved.

Branding slide

Thank you!

