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Agenda Motivation
Using serverless workflows  (e.g. Durable Functions)
for composition and coordination of services  

Netherite Architecture
Efficient execution of workflows on an elastic cluster



Serverless is about Developer Productivity

� Simplify development of cloud services 
by delegating server management
� to commercial provider (e.g. Azure, AWS, Google, IBM ...)
� or just to lower layer of the stack (e.g. Kubernetes + KEDA scaler)
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FaaS is not just another component.

With FaaS, you can build a serverless service 
entirely from serverless components:

It's the glue!
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Problem: Explicit State and Synchronization Are Hard
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� C1 -- Execution Progress
� What if function fails in the middle of execution? 
� What if function times out?

� C2 -- Persistent Application State
� Functions do not have local storage
� All persistent state needs to be saved explicitly

� C3 -- Exactly-Once Processing
� Functions may process event multiple times
� Developers must make functions idempotent

� C4 -- Concurrency
� Synchronization via storage is difficult (e.g. optimistic 

e-tags, pessimistic leases)



Solution: evolve the programming model
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Serverless Workflows
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We anticipate that the 
majority of cloud services
will be built in this way in 
the future.
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Two Research Questions

� How to express workflows?

� How to execute workflows?



How to express workflows?
FaaS + Storage Serverless Workflows

Example: 
FaaS w/ storage triggers

Examples: 
Temporal Workflows
Azure Durable Functions

Declarative Workflows-as-code

Examples: 
AWS step functions
Azure Logic Apps

workflow start_trial() 
{

await timer(30d);
if (!this.was_cancelled)
{

if (await charge_money())
{
await extend();
return;

}
}
await cancelsubscription();

}  

{
"StartAt": "Hello",
"States": {
"Hello": {
"Type": "Pass",
"Next": "World"

},
"World": {
"Type": "Pass",
"Result": "World",
"End": true

}
}

}

Queue 
q1

Queue 
q2

print “Hello”
q2.enqueue()

print “World”

trigger trigger
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FaaS + Storage Serverless Workflows



How to express workflows?

Example: 
FaaS w/ storage triggers

Examples: 
Azure Durable Functions
Temporal Workflows
Ray

Declarative Workflows-as-code

Examples: 
AWS step functions
Azure Logic Apps

workflow start_trial() 
{

await timer(days: 30);
if (!this.was_cancelled)
{

if (await charge_money())
{
await extend();
return;

}
}
await cancelsubscription();

}  
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"Hello": {
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"Next": "World"
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"World": {
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"End": true
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}
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FaaS + Storage Serverless Workflows



Two Research Questions

� How to express workflows?

� How to execute workflows?

Challenges:

- Fault tolerance, distribution, and elastic scale
- Continuous persistence without excessive storage traffic



Our approach
Durable Functions SDKs
Feature-rich polyglot workflow-as-code 

Netherite Backend
Asynchronously communicating partitions with  
persistence pipelining

Message-Passing Model 
Simple Intermediate representation

� How to execute workflows?

� How to express workflows? Translate into

Execute on



Original DF Implementation       vs.      Netherite

Throughput bottleneck:
too many storage accesses



Original DF Implementation       vs.      Netherite

Partitions are largely autonomous
Communicate via asynchronous ordered channels
(no need for distributed 2-phase commit)



Partition Persistence Optimizations

� Commit log
� commit many transitions with a single storage write (cf. group commit)

� Persistence Pipelining
� Allow local dependency on uncommitted transitions (cf. early lock release)
� Local only: outgoing messages wait for commit

� FASTER Key-Value Store enables
� Larger-than-memory instance store
� LRU cache for instance states
� Asynchronous, incremental checkpointing
� Instant Recovery (lazy loading)

Clients & other 
partitions



Improved Throughput (Scalability)



Status

Microsoft Product

� Azure Durable Functions
widely used, strong growth

� Netherite Execution Engine
currently in public preview

Research Publications

� Early preprint
ArXiV Februrary 2021

� DF semantics paper 
OOPSLA 2021

� Netherite paper
VLDB 2022
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